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Abstract

The theory of costly signaling (Spence 1973) is a well-established paradigm
in economics and theoretical biology, where it is also known as the Handicap
Principle (Zahavi 1975). Nevertheless, while costly-signaling games have been
extensively studied in classical game theory (focused on Nash equilibrium and
its refinements), evolutionary dynamics in costly-signaling games are relatively
unexplored. This paper gives a comprehensive account of evolutionary dynam-
ics in two canonical classes of games with two states of nature, two signals, and
two possible reactions to signals: a model with differential signaling costs (similar
to Spence’s model) and a model with differential benefits from success (simi-
lar to Milgrom and Roberts’s 1986, respectively Grafen’s 1990, model). We first
use index theory to give a necessary condition for the dynamic stability of the
equilibria in these games. Then, we study the replicator dynamics and the best-
response dynamics. Along the way, we relate our findings to classical equilibrium
refinements that test for the plausibility of beliefs off the equilibrium path.

Keywords: Costly-signaling games, Handicap Principle, index theory, replicator
dynamics, periodic orbits, best-response dynamics, equilibrium refinement,
never-a-weak-best-response criterion, ‘divinity,’ intuitive criterion.
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1 Introduction

“The term ‘market signaling’ is not exactly a part of the well-defined, technical vocab-
ulary of the economist,” Michael Spence writes in 1973 as the opening phrase of his
now famous article. “As a part of the preamble, therefore,” Spence adds, “I feel I owe
the reader a word of explanation about the title.” Today, fifty years later, caveats
of this kind are obsolete: The theory of costly signaling is part of the well-defined,
technical vocabulary of the economist—thanks to Spence’s contribution.

Costly-signaling theory, or the Handicap Principle, as it is known in theoretical
biology (Zahavi 1975), provides a rationale for the phenomenon that an observable
variable of choice that comes at a cost (educational credentials, advertising) or an
observable trait representing a ‘handicap’ (a prominent tail, elaborate plumage) indi-
cates some unobservable characteristics, such as performance, quality, or reproductive
fitness. The theory explains the informational content of such signals in terms of dif-
ferential costs of the variable or trait that functions as a signal. Applications span
over a wide range of phenomena studied in the social and natural sciences: education
as a signal for productivity in the job market (Spence 1973), dividend payments as
a signal for a firm’s fundamentals (Miller and Rock 1985), advertising as a signal for
product quality (Milgrom and Roberts 1986), ‘handicaps’ as signals for high-fitness
types in mate selection (Zahavi 1975), predator-prey (Caro 1986a, 1986b, Bergstrom
and Lachmann 2001), or parasite-host interaction (Archetti 2008), the begging of off-
spring as a signal for their need (Godfray 1991, Maynard Smith 1991), the practice
of inefficient foraging strategies, embodied handicaps (Bliege Bird et al. 2001, Bliege
Bird and Smith 2005), or politeness in language (Van Rooy 2003) as signals in social
relationships.

Still and all, while costly-signaling games have been extensively studied in classical
game theory (focused on Nash equilibrium and its refinements), the analysis of evolu-
tionary dynamics in costly-signaling games is relatively unexplored—leaving not only
some of the applications of costly-signaling theory without mathematical foundation
(notably in the social sciences, where equilibria are often implicitly understood as pat-
terns of behavior emerging in a population) but possibly also part of the explanatory
potential of these models unexploited.

The idea to explain the emergence of equilibria in costly-signaling models by some
dynamics in a population of agents is not new. Already Spence (1973) appeals to a
dynamic argument as a justification for the signaling equilibria that he considers in
the context of market interactions. In his thesis, later published as a book, Spence
(1974) embeds a simplified version of his model in a dynamic, discrete-time process
operating on a finite state space (analyzed in more detail by Nöldeke and Samuelson
1997). Spence’s original modeling framework, however, is not game theory. It is in
some sense not fully closed as a game-theoretic model and bears the traits of partial
market equilibrium analysis, notably because the uninformed party, the employer, is
by definition supposed to pay the expected marginal product (instead of endowing
that player with a payoff function and considering their choice of action an endogenous
strategic variable determined in equilibrium). Furthermore, the informed party, the job
candidate, is by definition assumed to have a unique signal as the best response to the
reaction of the uninformed party, and signaling equilibria are ex-ante assumed to fully
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reveal the type of the informed party, which amounts to an exclusion of mixed-strategy
equilibria that are partially revealing and partially pooling.

It was only later, in the context of the equilibrium-refinement literature of the
1980s, that costly-signaling games have been explicitly formulated in the language of
game theory. In this line of research, the robustness of sequential Bayesian Nash equi-
libria is tested by restricting beliefs off the equilibrium path, that is, in the hypothetical
case that a signal was observed that is actually never used in the equilibrium under
study. Cho and Kreps (1987), for instance, show that in a game-theoretic reformula-
tion of Spence’s model, their intuitive criterion discards the no-signaling equilibrium
outcome and selects the fully revealing equilibrium. The focus on fully revealing equi-
libria and the disregard of partially revealing equilibria persist in this literature (for
a review, see Kreps and Sobel 1994).

The dynamic stability of equilibria in costly-signaling games, naturally, has elicited
more attention in theoretical biology. In this literature, too, for a long time, researchers
have focused on fully revealing equilibria—‘honest’ signaling equilibria as is also said—
with parameters of the models chosen in such a way as to ensure their existence (see,
notably, Grafen 1990 and Maynard Smith 1991). The criterion used to test the stability
of equilibria in this line of research first has been that of an evolutionarily stable strategy
(ESS), after Maynard Smith and Price (1973). The ESS criterion, which relyies on
payoff comparisons between resident and mutant strategies, gives a first broad result:
Fully revealing equilibria are strict Nash equilibria, and these trivially satisfy the
ESS criterion. Later researchers have been attentive to the fact that the conditions
guaranteeing the existence of fully revealing equilibria are for many applications overly
restrictive. They have pointed out that under fairly plausible parameter constellations,
partially revealing equilibria in which the high type expresses the costly signal for
sure while the low type expresses it in some frequency—hybrid equilibria as is also
said—might exist (see, for instance, Bergstrom and Lachmann 1997).

Building on these observations, researchers in theoretical biology have turned to
the study of specific evolutionary dynamics in costly-signaling games in which hybrid
equilibria appear. Pioneering work has been done by Huttegger and Zollman (2010),
Wagner (2013), and Zollman, Bergstrom, and Huttegger (2013). In this line of research,
authors have concentrated on showing that hybrid equilibria can have some form of
local stability under standard evolutionary dynamics. Zollman, Bergstrom, and Hut-
tegger (2013), for instance, show that in a discrete variant of Spence’s, respectively
Grafen’s, model with two states of nature, two signals, and two reactions to sig-
nals, under the replicator dynamics, the hybrid equilibrium is surrounded by closed
orbits in its supporting two-dimensional face, which, in turn, attracts an open set of
nearby states. Their analysis, however, is restricted to certain parameter constellations
(notably to the case that the frequency on the high type is below a certain value) and
leaves critical aspects in the development of results unexplored.

The purpose of this article is to complement these results: first, by extending the
range of cases covered, notably by covering all possible cases for the prior probability of
types; second, by underpinning the dynamic analysis with a more detailed derivation
of crucial steps involved and by studying global convergence; thrid, by investigating
also the best-response dynamics. Furthermore, we relate the dynamic stability analysis
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of equilibria to two other robustness concepts: index theory and ‘classical’ refinements
of Bayesian Nash sequential equilibrium that rely on testing the plausibility of beliefs
off the equilibrium path.

We conduct our study in the two classes of games with two states of nature (‘high’
and ‘low’), two signals (a costly signal and the absence of that costly signal), and two
possible reactions to signals (‘accept’ and ‘do not accept’) studied also by Zollman,
Bergstrom, and Huttegger (2013):

Class I: a game in which the production of the costly signal is of different costs for the two
types—a discrete variant of Spence’s (1973) model; and

Class I: a game in which the production of the costly signal is of the same cost for the two
types, but the two types have different benefits if the signal has the desired effect,
which can be considered a simplified version of Milgrom and Robert’s (1986) model
of advertising and, to some extent, Grafen’s (1990) formalization of the Handicap
Principle.

To be more precise: We study Class I first and then show that Class II can be derived
from Class I under appropriate parameter substitutions.

Section 2 serves to introduce the model and analyze the equilibrium structure of
the games: We give an account of the equilibria in Class I—both in terms of the Nash
equilibria in the normal form as well as the sequential Bayesian Nash equilibria in the
extensive form—by making a case distinction along two lines:

(1) whether the cost of the signal for the low type is (i) below, (ii) equal to, or (iii)
strictly higher than the benefit from being accepted; and

(2) whether the probability of the high type p is below (the case considered by Zollman,
Bergstrom, and Huttegger), above, or equal to the probability at which player 2 is
indifferent between accepting or not.

All in all, this leads to nine subclasses. The distinction made under (1) amounts
to splitting up Spence’s model, which has a continuous signaling space, into three
paradigmatic cases with different equilibrium patterns; the distinction made under (2)
exhausts all possible equilibrium structures for any of the three cases defined under
(1). Such a detailed case distinction allows us to expose (1) under which conditions
regarding signaling costs fully revealing equilibria exist and (2) how the ‘meaning’ of
a signal changes as a function of the prior probability distribution over types.

In Section 3, as a first step into the dynamic analysis, we make use of index theory
(Shapley 1974, Hofbauer and Sigmund 1988, 1998, Ritzberger 1994, 2002, Demichelis
and Ritzberger 2003) to get a necessary condition, namely having an index of +1, for
the asymptotic stability of the respective equilibrium component under a wide range
of evolutionary dynamics in these games.

Then, we study in detail the replicator dynamics and the best-response dynamics.
Building on Gaunersdorfer, Hofbauer, and Sigmund (1991), respectively Cressmann
(2003), we show that for the general class of signaling games with two types, two
signals, and two actions, the replicator dynamics in the two-player (two-population)
normal-form game, which gives rise to a six-dimensional system, is foliated into a
two-parameter family of four-dimensional invariant manifolds and that on the central
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invariant manifold—sometimes referred to as the Wright manifold—it coincides with
the dynamics in the four-player (four population) game defined by the behavior strate-
gies in the extensive form (Proposition 1). Then, for each of the nine subclasses, we
determine the rest points of the replicator dynamics, study the qualitative behavior of
the dynamics near them, and investigate convergence on the central invariant manifold
(Propositions 2–12). The most general result emerging from this investigation is this:
For each of the nine subclasses, all interior orbits converge to some Nash-equilibrium
component or the union of the two-dimensional faces containing them. For the con-
spicuous case that the cost of the signal for the low type is below the benefit from
being accepted and the prior probability of the high type is below the critical value
at which player 2 is indifferent between accepting or not (the case also centrally stud-
ied by Zollman, Bergstrom, and Huttegger), we recover the periodic orbits around the
partially revealing, hybrid equilibrium (which has index +1) with its supporting face
attracting an open set of nearby states, making the equilibrium (locally) stable but
not asymptotically stable.

For the best-response dynamics, we show a projection result (Proposition 13) dual
to the invariant-foliation result concerning the replicator dynamics, which allows us to
reduce the two-population best-response dynamics to a system in lower dimensions,
for which we then study convergence and local stability (Propositions 14–16). Our
results show in particular that for the conspicuous case that the cost of the signal
for the low type is below the benefit from being accepted and the prior probabil-
ity of the high type below the critical value, under the best-response dynamics, the
partially revealing, hybrid equilibrium is not only stable but asymptotically stable.
More generally, components with index +1 that are stable but not asymptotically sta-
ble under the replicator dynamics are asymptotically stable under the best-response
dynamics. All in all, in relation to the index, our study of the two evolutionary pro-
cesses shows the following: Equilibrium components with index +1, which notably
include fully revealing, ‘honest,’ and partially revealing, hybrid equilibria (structurally
the same equilibrium component under different parameter constellations), whenever
they exist, are at least stable under the replicator dynamics and asymptotically stable
under the best-response dynamics, while all other equilibrium components, including
no-signaling–no-acceptance equilibrium outcomes, are unstable under both dynamics.

In Section 4, we show how our results for Class I (differential costs of produc-
ing the signal) translate to Class II (differential benefits from being accepted) by
a simple parameter substitution. In Section 5, we relate our findings to classical
equilibrium-refinement methods, focusing on three prominent criteria: the never-a-
weak-best-response criterion (Kohlberg and Mertens 1986), ‘divinity’ (Banks and Sobel
1987), and the intuitive criterion (Cho and Kreps 1987). In Section 6, we summarize
and comment on our results.

2 The model

Costly-signaling theory starts from a problem of asymmetric information. A player
(the hiring firm, the potential buyer, the female) in principle wants to conclude an
exchange with some other player (the job candidate, the firm offering its shares or a
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product, the male), but only if the other player is by nature of a certain type, namely,
of high productivity, high quality, high performance, high fitness, etc. The type of that
other player—the state of nature—is not directly observable. Therefore, the player
who has to make the choice of whether to hire, buy, mate, etc., cannot condition her
choice on the other player’s type. Of course, whether the player under consideration
should accept depends on the gains that she has from accepting or not, as a function
of the other player’s type, and the probability that she attributes to the other player’s
types. So far, then, this is simply a problem of choice under uncertainty or ‘game
against nature.’

One immediately realizes what the social dilemma emanating from such a game
against nature might be: The informed party might effectively be of the high type, but
if the probability attributed to that type (the frequency of that type in the population)
is too low, the right choice of the uninformed party might be not to accept. In other
words, the social exchange in question might not happen due to an informational
problem in society.

In such a situation, the player whose type is uncertain naturally has an interest in
making the other player think that he is of the ‘high’ type and will try to communicate
that. He will, in that aim, try to send a signal to the other player. However, if that
signal is of no cost, the possibility of sending such a signal will not enable the involved
parties to escape the unfortunate situation of no exchange. To see why, assume that
indeed only the high type uses this signal and that the other player at observing
the signal accepts and in the absence of the signal does not accept. If that were so,
then the low type would also be better off using the signal, and therefore this way
of interacting cannot constitute an equilibrium. The argument is intuitive: If talk is
cheap, the player whose type is uncertain will always say “I am of the high type,” “I
am truly motivated,” “I truly want this job,” “This really is a high-quality product,”
etc. As Spence (1973, p. 356) remarks: “If the incentives for veracity in reporting
anything by means of a conventional signaling code are weak, then one must look for
other means by which information transfers take place.” Spence’s fertile idea was to
look at the effect of costly signals.

2.1 Class I: Differential costs of producing the signal

This section presents a parametrized family of games, which can be seen as discretized
versions of Spence’s (1973) model.

The extensive form of the game is shown in the top panel of Figure 1: There are
two players, 1 and 2, and two possible states of nature, ‘high’ and ‘low,’ referring
to the types of player 1. Player 1 (the job candidate, the firm offering its shares or
a product, the male) knows the state of nature, namely if he is of the high or low
(productivity, quality, or fitness) type, but not the second player (the employer, the
potential buyer, the female), who however has to take an action that affects the payoff
of both players, namely whether to accept (a) or not to accept (ā) a certain productive
exchange with player 1 (hire, buy, mate). Before player 2 takes her action, though,
player 1, no matter what his type, has the possibility to send a costly signal s, that
is, to express a certain variable of choice or trait that can be observed by the second
player and that comes with a cost for the first player. In the game tree in Figure 1, the
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uncertainty that player 2 faces about player 1’s type is represented by a random move
of nature at the root of the tree, which nature takes with probability p for the high
type and 1− p for the low type. When player 2 comes to move, after having observed
the costly signal s, or its absence s̄, she still does not know the realization of nature’s
random move (indicated by putting the two respective nodes that player 2 cannot
distinguish in the same information set, the ovals in Figure 1), but she can condition
her choice on the observed signal. Most solution concepts in classical game theory build
on the assumption that the probabilities of player 1’s types are common knowledge.
In an evolutionary interpretation, where each player’s position is interpreted as a
population of players, the two types of player 1 represent subpopulations of the player-
1 population, with p and 1− p their frequencies. These two interpretations, of course,
do not exclude each other but can be seen as complementary.

In the game in Figure 1, which we refer to as Class I, following Spence’s original
idea, it is assumed that it is the very production of the signal s that is of different
costs for the two types of player 1. More specifically, in our game, the payoffs of player
1’s types can be understood as the sum of two components:

(1) a background payoff, which is identical for the two types, namely 1 if the second
player takes action a, and 0 if the second player takes ā (translating the assumption
that the first player always wants to be accepted, no matter what his type), and,

(2) the cost of the signal s, which is deducted from the background payoff and which is a
function of the type: c1 for the high type, and c2 for the low type, with 0 ≤ c1 < c2.

For a game given by an extensive form such as the one in Figure 1, a pure strategy
for player 1 is a plan of action of whether to send the costly signal or not, that is, take
s or s̄, as a function of his type; and a pure strategy for player 2 is a plan of action
of whether to take a or ā conditional on which signal she has observed. Each player
then has four possible pure strategies.

Pure strategies for player 1: Pure strategies for player 2:

ss: If high, then s; if low, then s aa: If s, then a; if s̄, then a
ss̄: If high, then s; if low, then s̄ aā: If s, then a; if s̄, then ā
s̄s: If high, then s̄; if low, then s āa: If s, then ā; if s̄, then a
s̄s̄: If high, then s̄; if low, then s̄ āā: If s, then ā; if s̄, then ā

Players’ strategies can, of course, also be mixed, that is, in terms of a probability
distribution over their respective set of pure strategies. We write x(ss), x(ss̄), etc. for
the probability attributed by a mixed strategy x to the pure strategies ss, ss̄, etc.
And similarly for player 2, using y.

Given the sequential structure of the game, mixed strategies of the normal-form
game can be interpreted as resulting from behavior strategies, that is, plans of action
giving for every node or information set of the respective player a probability distribu-
tion over the actions that he or she has available there. A behavior strategy for player
1, for instance, would be: “If you happen to be of the high type, send the costly signal
s with a probability of 60% (and do not send it with the complementary probability of
40%); if you happen to be of the low type, do not send the costly signal.” This particu-
lar behavior strategy is induced by a mixed strategy of ss̄ and s̄s̄, with a probability of
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Fig. 1 Class I. At the top, the game in extensive form; at the bottom, the game in normal form
resulting from that extensive-form game.

60% on the first and 40% on the second. A behavior strategy for player 2, for instance,
would be: “If you observe the costly signal s, take a for sure; if you do not observe it,
take a with a probability of 50% (and do not take it with the complementary proba-
bility of 50%),” which is induced by a mixed strategy of aa and aā with a probability
of 50% on each of them. The two games—the one based on mixed strategies defined
on complete contingent pure strategies and the other based on behavior strategies—
are, at least as to what concerns the existence of Nash equilibria, equivalent (Kuhn
1950, 1953). We denote behavior strategies as follows:

Behavior strategies for player 1: Behavior strategies for player 2:

(xh, x`): xh = prob(s | high), (y, y′): y = prob(a | s),
(xh, x`): x` = prob(s | low) (y, y′): y′ = prob(a | s̄)

A profile of behavior strategies, then, can be written in the form

(xh, x`, y, y
′).

This allows us to represent profiles of behavior strategies in the hypercube [0, 1]4, as
we use it in Figures 2, 4, 6, and 8.
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2.2 Nash equilibria in the normal-form game

Under the assumption that players evaluate payoffs as expected payoffs given the
probabilities of the states of nature, the normal form of the game, the game matrix,
can be derived by considering all 4× 4 combinations of pure strategies and evaluating
the payoffs of players at the end nodes of the paths induced by the respective strat-
egy combination—weighted by the probabilities with which these end nodes will be
reached, given the prior probability of the states of nature.

The Nash equilibria of this game, obviously, depend on the specific values of the
cost parameters, c1 and c2, and the prior p. In the following, we first isolate three
paradigmatic classes of differential signaling costs, namely, whether the cost of the
signal for the low type c2 is (i) smaller, (ii) equal to, or (iii) larger than 1. Then, within
each of these classes, we make a case distinction according to three cases of the prior
probability of the high type p, namely, p < 1/2, p > 1/2, and p = 1/2, which, for each
of the classes of differential signaling costs, exhaust all possible equilibrium structures.

Class I.i: Costs of the signal for both types strictly below the
benefit from being accepted: 0 ≤ c1 < c2 < 1

• If 0 < p < 1
2 , there is:

– E1, an equilibrium in which player 1 uses a mixed strategy with a probability of
p

1−p on ss and the complementary probability on ss̄, and player 2 uses a mixed
strategy with a probability of c2 on aā and the complementary probability on āā,
as well as

– P1, an equilibrium component in which player 1 takes s̄s̄, and player 2 uses a
mixed strategy with some probability in [0, c1] on aā and the complementary
probability on āā.

• If 1
2 < p < 1, there is:

– E2, an equilibrium in which player 1 uses a mixed strategy with a probability of
1− 1−p

p on ss̄ and the complementary probability on s̄s̄, and player 2 uses a mixed
strategy with a probability of 1− c1 on aa and the complementary probability on
aā,

– P2, an equilibrium component in which player 1 takes ss and player 2 uses a
mixed strategy with some probability in [0, 1− c2] on aa and the complementary
probability on aā, and

– P3, an equilibrium component in which player 1 takes s̄s̄ and player 2 any mixed
strategy between aa and āa.

• In the knife-edge case p = 1
2 , there is:

– E1’-P2, an equilibrium component in which player 1 takes ss and player 2 a
mixed strategy in the 3-dimensional polyhedron determined by y(aā) ≥ y(āa)+c2
(in other words, a component spanned by the four vertices ss × y with y =
(0, 1, 0, 0), (1− c2, c2, 0, 0), (0, c2, 0, 1− c2), (0, 1 + c2, 1− c2, 0)/2)), and

– P1-E2’-P3, an equilibrium component in which player 1 takes s̄s̄ and player 2
a mixed strategy in the triangular frustum, determined by y(aā) ≤ y(āa) +
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c1 (in other words, the convex hull of the six vertices s̄s̄ × y with y =
(1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) at the base and y = (1 − c1, c1, 0, 0), (0, c1, 0, 1 −
c1), (0, 1 + c1, 1− c1, 0)/2 at the top).

Class I.ii: Cost of the signal for the low type equal to the benefit
from being accepted: 0 ≤ c1 < c2 = 1

Nash equilibria in the normal form are as in class I.i, only with the following
substitutions:

• For 0 < p < 1
2 : E1 is replaced by E*-E1, an equilibrium component in which player

1 mixes between ss and ss̄ with some probability in [0, p/(1− p)] on ss and player
2 takes aā.

• For 1
2 ≤ p < 1: P2 and E1’-P2 are replaced by E*-E1’-P2, an equilibrium component

in which player 1 takes any mix between ss and ss̄ and player 2 takes aā.

Class I.iii: Cost of the signal for the low type higher than the
benefit from being accepted: 0 ≤ c1 < 1 < c2

Nash equilibria in the normal form are as in class I.i, only that E1, P2, and E1’-P2
are replaced by E*, a fully revealing equilibrium in which player 1 takes ss̄ and player
2 takes aā.

These Nash equilibria can easily be verified by use of the game matrix.

2.3 Sequential Bayesian Nash equilibria in the extensive form

For many applications, reasoning about the game in extensive form, in terms of behav-
ior strategies, is the more intuitive approach. This is the theoretical framework in
which signaling games are usually discussed in classical game theory, and it also under-
lies our study of the dynamics on the central invariant manifold. We, therefore, include
a discussion of the sequential Bayesian Nash equilibria in the extensive form of the
game.

For a game in extensive form, a sequential Bayesian Nash equilibrium (Kreps and
Wilson 1982) is a profile of behavior strategies together with a vector of beliefs (a
probability distribution over the states of nature for each information set) such that:

(1) players’ choices of actions at information sets where they potentially come to move
are a best response to the other players’ actions and their beliefs over the states of
nature from that information set onward, and

(2) the beliefs assigned to information sets are:

(2.1) compatible with Bayes’ law along the path being played (given the prior proba-
bility distribution p over the states of nature and players’ strategies), and

(2.2) ‘consistent’ off the path being played, in the sense that they can be deduced from
Bayes’ law after a small perturbation of the behavior strategies.

For signaling games as we consider them here, the condition that off the equilibrium
path beliefs be consistent (2.2) is always fulfilled. This is easy to verify: Let (p, 1− p)
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be the initial prior for (high, low). Suppose that in equilibrium a specific signal is never
sent and let (p∗, 1− p∗) be player 2’s belief off the equilibrium path when she was to
receive that signal. Suppose that player 1 perturbs his behavior strategies as follows:
the high type sends the signal that in the original equilibrium is never used with
probability ε(1− p)p∗, where ε is very small, and the low type sends this signal with
probability εp(1−p∗). By Bayes’ law, the updated belief is (p∗, 1−p∗). The conditions
of sequential Bayesian Nash equilibrium therefore reduce to (1) and (2.1) above.

For the game in Figure 1, each of the Nash equilibria in the normal-form game has
indeed a translation into behavior strategies that constitutes a sequential Bayesian
Nash equilibrium. This is shown in the following for each of the nine cases.

Class I.i: 0 ≤ c1 < c2 < 1

• For the case 0 < p < 1
2 :

– E1 translates to (1, p
1−p , c2, 0): the high type uses s for sure, while the low type

uses it with probability x` = p
1−p ; player 2, in case that s is observed, takes a

with probability y = c2, and in case that it is not observed, does not take a.
It is straightforward to verify that this profile of behavior strategies constitutes
a sequential Bayesian Nash equilibrium: Given that the high type uses s, the
probability with which the low type uses s is precisely such that at the observation
of s, player 2’s Bayesian updated belief is 1/2:

p(h | s) =
p

p+ (1− p) · x`
=

1

2
⇔ x` =

p

1− p .

At this belief, player 2 is indifferent between a and ā and therefore ready to
mix between the two. If s is not observed, player 2’s updated probability of the
high type will be 0, and to this belief, there is a unique best response: not to
accept. These choices of player 2 are precisely such as to make player 1’s low
type indifferent between s and s̄, which is needed to make him willing to use a
mix between these two strategies, and the high type strictly better off using s. In
E1, the absence of the costly signal fully reveals the low type, while the presence
of the costly signal s pushes player 2’s belief that player 1 is of high type up to
1/2. We, therefore, characterize E1 as partially revealing with partial pooling in s.
It is what in the literature in theoretical biology is often referred to as a hybrid
equilibrium. Figure 2 shows E1 in the hypercube: it is an isolated equilibrium
that sits in the 2-dimensional face given by (1, ∗, ∗, 0).

– P1 translates to (0, 0, y, 0), y ∈ [0, c1]: player 1 never uses s, no matter what
his type; player 2, in the counterfactual event that s is observed, takes a with a
probability not higher than c1, and when s is not observed, does not take a. Every
point in this equilibrium component maps to the same equilibrium outcome, that
is, probability distribution over end nodes of the game tree. It is straightforward
to check that any point in P1 can be sustained as a sequential Bayesian Nash
equilibrium: After s̄, given that both of player 1’s types use it, the updated belief
is equal to the prior, p < 1/2, and therefore player 2 has to choose ā. In the
counterfactual event that player 2 observes s, a situation off the equilibrium path,
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Bayes’ law is not defined and hence imposes no restrictions. To make player
2’s choice of taking a with a probability y ∈ [0, c1] compatible with sequential
Bayesian Nash equilibrium, it therefore suffices to find some belief to which this
is a best response. And there are many such beliefs: For any belief on the high
type strictly smaller than 1/2, player 2’s best response will be to take a with 0
probability. If the belief is equal to 1/2, then player 2 will be indifferent between
a and ā, and hence taking a with some y ∈ [0, c1] is a best response. Equilibria of
this form, in which all types use the same signal, are often referred to as pooling
equilibria. Hence the symbol: P1. Figure 2 shows the position of P1 in the space
of behavior strategies: it reaches from (0, 0, 0, 0) to (0, 0, c1, 0), marked by -P1 in
the figure.

• For the case 1
2 < p < 1:

– E2 translates to (1 − 1−p
p , 0, 1, 1 − c1), an equilibrium that is partially revealing

with partial pooling in s̄: the high type uses s with probability xh = 1 − 1−p
p ,

while the low type never uses it, which is such that player 2 in the absence of s
will have an updated belief that will make her indifferent between a and ā:

p(h | s̄) =
p · (1− xh)

p · (1− xh) + (1− p) =
1

2
⇔ 1− xh =

1− p
p

.

Player 2, if she observes s, will choose a for sure (which will be the best response
to her updated belief, which is equal to 1), and if she does not observe it, will
choose a with probability y′ = 1 − c1, which is the probability that will make
player 1’s high type indifferent between using and not using s, while ensuring that
not using s is a best response for player 1’s low type. Here the costly signal s fully
reveals the high type, while the absence of the costly signal (s̄) brings player 2’s
belief down to 1/2.

– P2 translates to (1, 1, 1, y′), y′ ∈ [0, 1− c2]: both types of player 1 use s (‘pooling’
in s); player 2, when s is observed, will have the same belief as the prior, p > 1/2,
and will therefore take a, and in the absence of s, which will be off the equilibrium
path, either believes that player 1 is of the high type with a probability of less
than 1/2, in which case she will choose ā, or believes that 1 is of the high type
with a probability of 1/2 and will choose a with a probability y′ ∈ [0, 1 − c2],
which will be low enough to prevent player 1’s low type, and a fortiori player 1’s
high type, from deviating from s.

– P3 translates to (0, 0, y, 1), y ∈ [0, 1]: player 1 never uses s, no matter what his
type (‘pooling’ in s̄); player 2, in the absence of s, will have the same belief as
the prior, p > 1/2, and hence will choose a, and in the counterfactual event that
s is observed can have any belief and best respond to it.
Figure 4 shows E2, P2, and P3 in the hypercube.

• For the knife-edge case p = 1
2 :

– E1’-P2 translates to (1, 1, y, y′), y ∈ [c2, 1], y′ ∈ [0, y − c2]: a 2-dimensional set
of behavior strategies, an isosceles right triangle, spanned by (1, 1, 1, 0), -P2=
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(1, 1, 1, 1 − c2), and E1’ = (1, 1, c2, 0). That is, a continuum of equilibrium out-
comes, in which player 1 always uses s, no matter what his type (‘pooling’ in s),
and player 2, when she observes s, will have the same belief as the prior 1/2, at
which she is indifferent between a and ā, and will take a with some probability
y ∈ [c2, 1], and in response to the off-the-equilibrium-path signal s̄ will take a
with some probability y′ ∈ [0, y− c2], which guarantees that both types of player
1 have no incentive to deviate from s. In particular, when y = c2, then y′ = 0
(similarly as in E1); and when y = 1, then y′ ∈ [0, 1− c2] (as in P2).

– P1-E2’-P3 translates to (0, 0, y, y′), y ∈ [0, y′ + c1], if y′ + c1 ≤ 1, y ∈ [0, 1] if
y′ + c1 > 1; y′ ∈ [0, 1]: a 2-dimensional set of behavior strategies spanned by
(1, 0, 0, 0), -P1= (0, 0, c1, 0), and E2’ = (0, 0, 1, 1− c1), (0, 0, 1, 1), and (0, 0, 0, 1).
That is, a continuum of equilibrium outcomes, in which player 1 never uses s, no
matter what his type (‘pooling’ in s̄), and player 2, in the absence of s, will have
the same belief as the prior 1/2 and will take a with some probability y′ ∈ [0, 1],
and in response to the off-the-equilibrium-path signal s will take a with some
probability y ∈ [0, y′ + c1] if y′ + c1 ≤ 1 and with some probability y ∈ [0, 1]
if y′ + c1 > 1. In particular, y′ = 0 is supported by any y ∈ [0, c1] (as in P1);
y′ = 1− c1 by any y ∈ [0, 1] (similarly as in E2); and y′ = 1 by any y ∈ [0, 1] (as
in P3).
Figure 6 shows E1’-P2 and P1-E2’-P3 in the hypercube.

Class I.ii: 0 ≤ c1 < c2 = 1

• For 0 < p < 1
2 , E*-E1 translates to (1, x`, 1, 0), x` ∈ [0, p

1−p ], a continuum of

equilibrium outcomes reaching from a fully revealing equilibrium E*, in which the
high type always and the low type never uses s (x` = 0), to an equilibrium that is
partially revealing/partially pooling in s like E1 (x` = p/(1−p))). In any equilibrium
belonging to this continuum, player 1’s high type uses s and player 1’s low type
uses it with some probability x`, sufficiently low (possibly 0), such that if player
2 observes s, her updated belief will guarantee that choosing a is a best response,
which will be the case if:

p(h | s) =
p

p+ (1− p) · x`
≥ 1

2
⇔ 0 ≤ x` ≤

p

1− p .

The absence of the costly signal (s̄) fully reveals the low type, and hence player 2’s
best response is unique: ā. Given player 2’s behavior strategy, player 1’s high type
is strictly better off using s, and the low type is indifferent between s and s̄.

• For 1
2 ≤ p < 1, E*-E1’-P2 translates to (1, x`, 1, 0), x` ∈ [0, 1], a continuum of

equilibrium outcomes reaching from the fully revealing equilibrium E* (x` = 0), over
partially revealing/partially pooling equilibria similar to E1, to an equilibrium in
the style of P2, in which both types use s (x` = 1). In any equilibrium belonging
to this continuum, after s, player 2’s updated belief is strictly above 1/2: taking
a therefore is the best response. For any x` < 1, s̄ fully reveals the low type, and
therefore ā is the unique best response to s̄. When x` = 1 (P2), the updated belief
after s will be the same as the prior, and because this is above 1/2, taking a will
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Table 1 Equilibrium structure for class I.i: 0 ≤ c1 < c2 < 1

Prior Equilibrium Index Rep. BR NWBR, Intuitive Payoffs

p component dyn. dyn. ‘divinity’
h
`
2

< 1
2 E1: part. revealing/ +1 stable asympt. yes yes c2 − c1

part. pooling in s: stable 0
(1, p

1−p , c2, 0) 1− p

P1: pooling in s̄: −0 unstable unstable no yes 0
(0, 0, y, 0), y ∈ [0, c1] 0

1− p

> 1
2 E2: part. revealing/ −1 unstable unstable yes yes 1− c1

part. pooling in s̄: 1− c1
(1− 1−p

p , 0, 1, 1− c1) p

P2: pooling in s: +1 stable asympt. yes yes 1− c1
(1, 1, 1, y′), y′ ∈ [0, 1− c2] stable 1− c2

p

P3: pooling in s̄: +1 asympt. asympt. yes yes 1
(0, 0, y, 1), y ∈ [0, 1] stable stable 1

p

= 1
2 E1’-P2: pooling in s: +1 stable asympt. yes yes [c2−c1, 1−c1]

(1, 1, y, y′), y ∈ [c2, 1], stable [0, 1− c2]
y′ ∈ [0, y − c2]) 1

2

P1-E2’-P3: pooling in s̄: −0 unstable unstable only when only when [0, 1]
(0, 0, y, y′), (y, y′) ∈ [0, 1]2 y′ ∈ [1−c1, 1] y′ ∈ [0, 1−c2]∧ [0, 1]
y ≤ y′ + c1 y′ ∈ [1− c1, 1] 1

2

be the unique best response. Any belief that puts a probability of at least 1/2 on
player 1’s low type after s̄ supports this equilibrium.

Class I.iii: 0 ≤ c1 < 1 < c2

• E*, which exists under any prior, translates to (1, 0, 1, 0), a fully revealing or, as is
also said, honest signaling equilibrium, in which the high type uses s and the low type
s̄, and player 2 in reaction to s takes a and in reaction to s̄ takes ā. The Bayesian
update is trivial here: observation of s sets the belief equal to 1; the absence of s
sets the belief to 0.

Tables 1, 2, and 3 give an overview of the equilibrium structure for each subclass,
for each of the three cases concerning the prior p. Figure 8 shows the equilibrium
components in the hypercube for each of the nine cases.

2.4 Excursion: Qualitative properties of the equilibrium
structure and ‘meaning’

The distinction of the three cases concerning the cost parameters (subclasses i–iii)
and the three cases concerning the prior p (<, >, = 1/2) allows us to see how each
parameter acts on qualitative properties of the equilibrium structure of the game.
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Table 2 Equilibrium structure for class I.ii: 0 ≤ c1 < c2 = 1

Prior Equilibrium Index Rep. BR NWBR, Intuitive Payoffs

p component dyn. dyn. ‘divinity’
h
`
2

< 1
2 E*-E1: fully to part. +1 stable asympt. yes yes 1− c1

revealing/part. pool. in s: stable 0
(1, x`, 1, 0), x` ∈ [0, p

1−p ] [1−p, 1]

P1: pooling in s̄: −0 unstable unstable no yes 0
(0, 0, y, 0), y ∈ [0, c1] 0

1− p

> 1
2 E2: part. revealing/ −1 unstable unstable yes yes 1− c1

part. pooling in s̄: 1− c1
(1− 1−p

p , 0, 1, 1− c1) p

E*-E1-P2: fully revealing +1 stable asympt. yes yes 1− c1
to pooling in s: stable 0

(1, x`, 1, 0), x` ∈ [0, 1] [p, 1]

P3: pooling in s̄: +1 asympt. asympt. yes yes 1
(0, 0, y, 1), y ∈ [0, 1] stable stable 1

p

= 1
2 E*-E1-P2: fully revealing +1 stable asympt. yes yes 1− c1

to pooling in s: stable 0
(1, x`, 1, 0), x` ∈ [0, 1] [ 12 , 1]

P1-E2’-P3: pooling in s̄: −0 unstable unstable only when only when [0, 1]
(0, 0, y, y′), (y, y′) ∈ [0, 1]2 y′ ∈ [1−c1, 1] y′ ∈ [0, 1−c2]∧ [0, 1]
y ≤ y′ + c1 y′ ∈ [1− c1, 1] 1

2

Table 3 Equilibrium structure for class I.iii: 0 ≤ c1 < 1 < c2

Prior Equilibrium Index Rep. BR NWBR, Intuitive Payoffs

p component dynam. dynam. ‘divinity’
h
`
2

< 1
2 E*: fully revealing: +1 asympt. asympt. yes yes 1− c1

(1, 0, 1, 0) stable stable 0
1

P1: pooling in s̄: −0 unstable unstable no no 0
(0, 0, y, 0), y ∈ [0, c1] 0

1− p

> 1
2 E2: part. revealing/ −1 unstable unstable yes yes 1− c1

part. pooling in s̄: 1− c1
(1− 1−p

p , 0, 1, 1− c1) p

E*: fully revealing: +1 asympt. asympt. yes yes 1− c1
(1, 0, 1, 0) stable stable 0

1

P3: pooling in s̄: +1 asympt. asympt. yes yes 1
(0, 0, y, 1), y ∈ [0, 1] stable stable 1

2 : p

= 1
2 E*: fully revealing: +1 asympt. asympt. yes yes 1− c1

(1, 0, 1, 0) stable stable 0
1

P1-E2’-P3: pooling in s̄: −0 unstable unstable only when only when [0, 1]
(0, 0, y, y′), (y, y′) ∈ [0, 1]2 y′ ∈ [1−c1, 1] y′ ∈ [0, 1−c2]∧ [0, 1]
y ≤ y′ + c1 y′ ∈ [1− c1, 1] 1

2
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First, the existence of the fully revealing—‘honest’—equilibrium E* depends on
the cost of the signal for the low type but not on the prior:

• E* exists only if the cost of the signal for the low type is at least as high as the
benefit that he gets from being accepted, that is, c2 ≥ 1 (subclasses ii, Table 2; and
iii, Table 3). This reflects a condition for continuous games, which in the economics
literature is known as the single-crossing property (see, for example, Kreps and Sobel
1994). In theoretical biology, this observation is sometimes expressed by saying that
it is the ‘cost of cheating’ that sustains honest communication (see, for instance,
Számadó 2011). When E* exists, it exists for any prior p (whereas the existence of
other equilibria depends on the prior).

• E* and the partially revealing equilibrium E1 represent the same equilibrium compo-
nent in different games belonging to the same family of games generated by varying
the cost of the signal for the low type, c2. Whenever E* and E1 co-exist in the same
game (subclass ii, c2 = 1, Table 2), they belong to the same equilibrium component.

• E* is never the unique equilibrium. Whenever it exists, there are also other equilibria,
notably no-signaling equilibrium components, in which none of player 1’s types
expresses the costly signal and the second player acts on her prior, which, depending
on the prior, can make her not accept (such as in P1) or accept (such as in P2).

The prior p, on the other hand, acts on what could be referred to as the meaning
of a signal (in equilibria other than E*), if by the meaning of a signal one understands
what it does: what is its effect on the updated belief of player 2 over player 1’s types
and what it therefore makes player 2 do.1 Focusing on the two generic cases for p:

• When the prior on the high type is below the critical value p < 1/2, the costly signal
s, if used in equilibrium, has the function of ‘pushing up’ the belief of player 2. How
far, depends on c2: when c2 < 1, up to the critical value p = 1/2, which makes player
2 indifferent between accepting and not accepting (E1, subclasses i, Table 1); (ii)
when c2 = 1, up to the critical value p = 1/2 or above, possibly up to 1 (equilibria
in E1-E*, subclasses ii, Table 2). And, when c2 > 1, up to 1, making player 2 accept
(E*, subclasses iii, Table 3). The absence of the signal, s̄, instead, always makes
that player 2 will not accept—no matter which of the two co-existing equilibrium
components, E1 (respectively E1-E* or E*) or the no-signaling–no-acceptance P1
prevails.

• When the prior is above the critical value p > 1/2, the costly signal, if used in
equilibrium, has the function of keeping the prior above the critical value (P2) or
pushing it even higher, possibly up to 1 (equilibria in E*-E1-P2 other than P2,
E* and E2) and therefore make player 2 accept. The meaning of the absence of
the costly signal, instead, critically depends on which of the co-existing equilibrium
outcomes prevails: in E2, it lowers the belief of player 2 to the critical value p = 1/2
and hence makes player 2 indifferent between accepting or not; in E* respectively
equilibria in E*-E1-P2 other than P2, it makes the belief drop to 0 and hence makes
player 2 not accept; in P3 it leaves the prior belief, which is already above 1/2,
unchanged and hence makes player 2 accept.

1“The meaning of a word is its use in the language,” Wittgenstein famously writes in §43 of Philosophical
Investigations.
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In terms of the welfare properties of equilibria, again focusing on the two generic
cases of the prior p, we have the following:

• When the prior on the high type is below the critical value, p < 1/2, no matter
whether the cost of the signal for the low type c2 is below, equal to, or larger than
1 (Tables 1, 2, 3), the equilibrium component in which the costly signal is at least
partially informative, namely, E1 respectively E*-E1 or E*, is better, in the sense of
Pareto, than the co-existing no-signaling–no-acceptance equilibrium component P1:
In E1, relative to P1, nobody is made worse off and at least someone, namely, the
high type of player 1, is made strictly better off; in an equilibrium in the component
E*-E1, different from E1, and in E*, player 2 is also made better off. Hence, the
possibility to use a costly signal has the potential to increase social well-being over
a situation in which such a costly signal is not available.

• When the prior on the high type is above the critical value, p > 1/2, then payoff
comparisons between equilibria depend on the cost of the signal for the low type:
When c2 < 1 (Table 1), the equilibrium component P3, in which none of player 1’s
types uses the costly signal and player 2 accepts, Pareto dominates the two other
equilibrium components E2 and P2 (both types of player 1 strictly prefer P3 over P2
and E2, while player 2 is indifferent between all three equilibrium outcomes). Hence,
the possibility of using a costly signal can result in a social tragedy, namely when
players get caught in the suboptimal equilibrium outcome P2, in which everybody is
forced to express the costly signal—because everybody thinks that otherwise player
2 would not accept—which in the end has the effect that the costly signal does
not carry any information. When c2 is equal to or larger than 1 (Tables 2 and 3),
equilibria can no longer be completely ranked according to the Pareto criterion:
Player 2 prefers outcomes in the component E*-E1’-P2, different from P2, and E*,
over E2 and P3; while both types of player 1 strictly prefer P3 over E2 and E*-E1’-
P2 respectively E*. In other words, there is a potential conflict of interest between
player 1 and player 2 over the co-existing equilibrium outcomes.

3 Evolutionary dynamics

In an evolutionary context, Nash equilibria are interpreted as equilibria in a population
of players. Games with two players are understood as models of interaction between
two different populations, for instance, male and female or predator and prey. If a
player can be of two different types, these represent subpopulations of the respective
population with the frequencies given by the prior probability distribution of types. A
state of the two-population system corresponds to a distribution of strategies for each
of the player positions.

For an equilibrium to be a good prediction of the model from an evolutionary
point of view, the corresponding state of the system has to be resistant to evolutionary
shocks, that is, random drift among strategies already present in the population and
newly appearing variation in the form of mutant strategies.

Theorists have approached the question of evolutionary stability on three different
levels:

17



(1) ‘static’ criteria, such as, most prominently, Maynard Smith and Price’s (1973) notion
of evolutionarily stable strategy (ESS), which relies on payoff comparisons between
mutant and resident strategies;

(2) the study of specific evolutionary dynamics defined on the respective game—a
research program that has aimed at establishing relations between static ESS cri-
teria and stability properties of the associated fixed point under specific dynamics
(Taylor and Jonker 1978, Hofbauer et al. 1979, Hofbauer and Sigmund 1988, 1998);
and

(3) qualitative dynamic stability properties of equilibria under a wider range of dynamic
processes based on topological properties of the respective equilibrium component,
an approach related to index theory.

We first turn to this last approach as it has the additional advantage of provid-
ing a complete system of classification. Then, we study in more detail the replicator
dynamics and the best-response dynamics for our classes of games.

3.1 The index of equilibria: a necessary condition for
evolutionary stability

Already Shapley (1974), in his description of the Lemke-Howson algorithm, associated
an index, +1 or −1, to each regular equilibrium (in a 2-person game, an equilibrium is
regular if and only if it is isolated and quasistrict, that is, unused strategies do strictly
worse) with the following properties:

(1) Every strict equilibrium has index +1.
(2) Removing or adding unused strategies does not change the index of a regular

equilibrium.
(3) The sum of the indices of all equilibria, if they are all regular, is 1. This is often

referred to as the index theorem, which implies the odd number theorem: In generic
games, the number of equilibria is odd.

Von Stengel (2021) gives a modern exposition of this approach.
An alternative approach to the index based on the replicator dynamics and

Brouwer’s degree theory is given by Hofbauer and Sigmund (1988, 1998). Here the
index of a regular equilibrium is the sign of the determinant of the negative Jacobian
matrix of the replicator dynamics evaluated at this equilibrium.

Ritzberger (1994, 2002) extends this approach and defines the index of components
of Nash equilibria. Recall that in a finite game (finitely many players, each mixing
among finitely many pure strategies), the set of Nash equilibria is semialgebraic, and
hence consists of finitely many connected components. An index (which can now be an
arbitrary integer) can be associated with any of these components, such that the sum
over all components is again +1. This index is robust against payoff perturbations in
the following sense: Let C be a component and U an open neighborhood of C such
that all equilibria in the closure of U are already in C. A perturbation of the payoffs
will in general change C. Now, let Cε be the set of all equilibria of the perturbed
game that lie in U (we assume that the perturbation is small enough so that again no
perturbed equilibrium lies on the boundary of U). The set Cε need not be connected,
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but it is the finite union of connected components Cε
1 , . . . , C

ε
k. Brouwer’s degree theory

then implies that the sum of the indices of Cε
1 , . . . , C

ε
k equals the index of C. It might

happen that Cε is empty—but only if C has index 0. Using these simple properties,
one can easily compute the index of any Nash-equilibrium component.

For practical matters, there are three efficient ways of determining the index of an
equilibrium component or a degenerate, that is, nonregular, equilibrium:

(a) Perturb the game so that all perturbed equilibria are regular: The index of an
equilibrium component of the original game is then the sum of the indices of the
corresponding nearby equilibria in the perturbed game—the robustness property of
the index.

(b) Use the index theorem (if the indices of all other components are known). And
finally:

(c) If an equilibrium component C is asymptotically stable for some evolutionary
dynamics, then its index equals its Euler characteristic.

The last property, which is of particular interest here because it establishes the con-
nection to evolutionary dynamics, is given by a beautiful theorem by Demichelis and
Ritzberger (2003). An important special case is: If an equilibrium component is convex
and asymptotically stable under some evolutionary dynamics, then its index is +1.

In Class I, subclass i (0 ≤ c1 < c2 < 1), we get the following characterization of
equilibria in terms of the index:

• When 0 < p < 1
2 , the partially revealing equilibrium E1 is an isolated and

quasistrict—hence regular—equilibrium in which both players mix between two
strategies. Omitting the strategies that are unused at this equilibrium leads to a
cyclic 2×2 game, similar to a matching-pennies game. E1 is the only equilibrium in
this restricted game. By the index theorem, then, its index is +1. Therefore, in the
full (4 × 4) game, again by the index theorem, the only other component P1 must
have index 0.

• At p = 1
2 , there are still two components, E1’-P2 and P1-E2’-P3. By the robustness

property of the index, E1’-P2 has index +1: In any perturbed game that comes to
lie in the case p < 1/2, E1 corresponds to the component E1’-P2, which implies
that the two have the same index. By the index theorem, the component P1-E2’-P3
then has index 0. (Note that P1-E2’-P3 has index 0 also by robustness of the index:
in any perturbed game that comes to lie in the case p < 1/2, P1 corresponds to the
component P1-E2’-P3 and they, therefore, have to have the same index.)

• When 1
2 < p < 1, there are three components: By robustness, P2 (which corre-

sponds to the component E1’-P2) has index +1. The partially revealing equilibrium
E2 is isolated and quasistrict—hence regular—and both players mix between two
strategies. If we discard the unused strategies, the 2 × 2 restricted game is a coor-
dination game, with two strict equilibria, and E2. Since strict equilibria have index
+1, E2 has index −1. As a consequence, in the full game, by the index theorem, the
third component, P3, has index +1.

In other words, as p increases through the critical value 1
2 , the equilibrium component

P1 splits into the two components E2 and P3. As required by the robustness property
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of the index, the index of the component P1-E2’-P3 (0) is, on the one hand, the same
as that of P1 and, on the other hand, the same as the sum of the indices of E2 and
P3. Table 1 summarizes these results. It follows from these results, by Demichelis and
Ritzberger’s theorem, that P1, E2, and P1-E2’-P3 cannot be asymptotically stable
for any reasonable dynamics, while E1, P2, and P3, and E1’-P2 are candidates for
asymptotic stability, at least for some evolutionary dynamics.

Due to the robustness property of the index, with the appropriate substitutions,
these results extend to the two other subclasses capturing variations of the c2 param-
eter: For Class I, subclass ii (c2 = 1), E1 ‘turns into’ E*-E1, and P2 and E1’-P2 into
E*-E1’-P2; for Class I, subclass iii (c2 > 1), E1, P2, and E1’-P2 turn into E* (see
Section 2.2). Certainly this has to be so, because varying the cost parameters means
to perturb the payoffs—to look at games ‘nearby’—and what defines the index is
precisely that it is robust under such perturbations. Tables 2 and 3 cover these cases.

Looking at the index of equilibrium components across all three subclasses, i–
iii (Tables 1, 2, and 3), note in particular that the fully revealing equilibrium E*,
whenever it exists, always sits in a component with index +1; and, curiously, equilib-
rium components with an index 6= +1 are those that do not change across the three
subclasses.

3.2 Replicator dynamics for the game in normal form

In general, the replicator dynamics for an n1 × n2 two-population game is given by
the following system of differential equations:

ẋi = xi(u
1
i − ū1), i = 1, . . . n1,

ẏj = yj(u
2
j − ū2), j = 1, . . . n2,

(1)

where uki is the payoff of player k playing strategy i, and ūk the average payoff of player
k, and as usually, the dot-notation ẋi and ẏj refers to the derivatives with respect to
time.

For our game, with the notation y = (y(aa), y(aā), y(āa), y(āā)),

y = y(aa) + y(aā),

y′ = y(aa) + y(āa),
(2)

we can write the payoffs for player 1 against a mixed strategy y of player 2 as follows:

u1
1 = u1(ss,y) = y − pc1 − (1− p)c2,
u1

2 = u1(ss̄,y) = p(y − c1) + (1− p)y′,
u1

3 = u1(s̄s,y) = (1− p)(y − c2) + py′,

u1
4 = u1(s̄s̄,y) = y′.

(3)

Note that:
u1(ss) + u1(s̄s̄) = u1(ss̄) + u1(s̄s). (4)
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Similarly, with x = (x(ss), x(ss̄), x(s̄s), x(s̄s̄)), xh = x(ss) + x(ss̄), and x` = x(ss) +
x(s̄s), we can express the payoffs for player 2 against a mixed strategy x of player 1 as:

u2
1 = u2(aa,x) = p,

u2
2 = u2(aā,x) = pxh + (1− p)(1− x`),
u2

3 = u2(āa,x) = p(1− xh) + (1− p)x`,
u2

4 = u2(āā,x) = 1− p,

(5)

and
u2(aa) + u2(āā) = u2(aā) + u2(āa). (6)

We point out that (4) and (6) hold for any normal-form game derived from a game tree
as given in Figure 1 (for any specification of payoffs at the end nodes of the tree). These
special features allow us to reduce the replicator dynamics to a smaller dimension.

Lemma 1. Let
ẋi = xi(ui − ū), i = 1, . . . 4 (7)

be the replicator equations for a population whose payoff function u : ∆4 → R4 satisfies
u1 +u4 = u2 +u3. Then x1x4

x2x3
is a constant of motion for (7). The invariant manifold

x1x4 = x2x3 can be parameterized by x1 = xx′, x2 = x(1 − x′), x3 = (1 − x)x′, x4 =
(1 − x)(1 − x′) with (x, x′) ∈ [0, 1]2 where conversely, x = x1 + x2, x

′ = x1 + x3. On
this invariant manifold, (7) can be written as

ẋ = x(1− x)(u1 − u3)

ẋ′ = x′(1− x′)(u1 − u2)
(8)

Proof. Applying the quotient rule to (7) yields:(
x1x4

x2x3

)·

=

(
x1x4

x2x3

)
(u1 + u4 − u2 − u3) = 0. (9)

By x1x4 = x2x3 one obtains (8) (similarly as in Gaunersdorfer, Hofbauer, and Sigmund
1991, and Cressman 2003).

Proposition 1 (Foliation of the replicator dynamics). For the normal-form game in

Figure 1: x(ss)x(s̄s̄)
x(ss̄)x(s̄s) and y(aa)y(āā)

y(aā)y(āa) are constants of motion for the replicator dynamics

(1), which is to say that the 6-dimensional state space ∆4 × ∆4 is foliated into a
two-parameter family of 4-dimensional invariant manifolds. On the ‘central’ invariant
manifold, given by

x(ss)x(s̄s̄) = x(ss̄)x(s̄s), y(aa)y(āā) = y(aā)y(āa), (10)
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which is sometimes called the Wright manifold (see, for example, Cressman 2003),
the replicator dynamics simplifies to:

ẋh = xh(1− xh)(y − c1 − y′)p,
ẋ` = x`(1− x`)[y − c2 − y′](1− p),
ẏ = y(1− y)[pxh − (1− p)x`],
ẏ′ = y′(1− y′)[p(1− xh)− (1− p)(1− x`)],

(11)

with the state space of this system the hypercube [0, 1]4.

Proof. By Lemma 1 and equations (4) and (6). Equation (11) results from inserting
(3) and (5) into (8).

3.3 Replicator dynamics for behavior strategies

Instead of looking at the two-population dynamics in the normal-form game with four
pure strategies for each population (payoff matrix at the bottom of Figure 1), one
can also look at the replicator dynamics for behavior strategies: the four-population
dynamics as given by the agents in the extensive-form game with two pure strategies
for each agent. The second coincides with the first on the central invariant manifold.

Proposition 2 (Replicator dynamics on Wright manifold—in behavior strategies).
The system of differential equations (11) on the hypercube [0, 1]4 can be derived directly
from the extensive form, as the replicator dynamics for behavior strategies.

Proof. For this purpose, we interpret xh = prob(s|high), x` = prob(s|low), y =
prob(a|s), and y′ = prob(a|s̄). Recall that in a binary choice game, with alterna-
tives A and B, and frequencies x and 1 − x, the replicator dynamics reads ẋ =
x(1 − x)[u(A) − u(B)]. When we apply this to the 4-player game defined by the
extensive-form game in Figure 1, this leads to (11). The factors p and 1−p in the first
two equations come from the probabilities of nature’s draw.

In other words: the system of differential equations (11) is the replicator equation
for a binary four-person game with linear incentives, with the hypercube [0, 1]4 as
state space. In the following, we analyze this dynamics for each of the three subclasses
concerning the cost parameters and, within each of these, the three relevant cases
regarding p.

Class I.i: 0 ≤ c1 < c2 < 1

0 < p < 1
2 : All 24 corners of the hypercube as well as the Nash equilibrium E1

= (1, p
1−p , c2, 0), and the edges (0, 0, ∗, 0), which includes the Nash-equilibrium

component P1, (0, 0, ∗, 1), (1, 1, 0, ∗), and (1, 1, 1, ∗) are rest points of (11).

Proposition 3 (Replicator dynamics near E1). For the replicator dynamics (11)
on the hypercube [0, 1]4, E1 is Lyapunov stable. More precisely, it is surrounded by
closed orbits in its supporting boundary face (1, ∗, ∗, 0) (lower front square in Figure
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2; lower right square in Figure 3), and there is an open neighborhood of E1 in [0, 1]4

from where the orbits converge to the boundary face (1, ∗, ∗, 0), approaching one of
the periodic solutions near E1. Every periodic solution in the face (1, ∗, ∗, 0) attracts
a three-dimensional manifold of nearby orbits. However, the closed face (1, ∗, ∗, 0) is
not stable, due to the orbit on the edge from (1, 0, 0, 0) to (0, 0, 0, 0), see Figure 2 or
Figure 3.

Proof. In the supporting boundary face of E1, (1, ∗, ∗, 0), which in Figure 2 corresponds
to the lower front square, we have:

ẋ` = x`(1− x`)[y − c2](1− p),
ẏ = y(1− y)[p− (1− p)x`],

(12)

which is the replicator dynamics for a cyclic 2×2 game, with closed orbits around the
equilibrium E1 (see Figure 3, lower right square). Linearization at E1 in direction of
the missing strategies gives

ẋh = (1− xh)(c2 − c1)p, ẏ′ = y′(2p− 1). (13)

Hence E1 is a quasistrict Nash equilibrium, and it has a two-dimensional stable man-
ifold, which intersects the open hypercube (0, 1)4 in a quarter ‘plane’ consisting of all
interior orbits converging to E1. Moreover, there is an open neighborhood of E1 in
[0, 1]4 from where the orbits converge to the boundary face (1, ∗, ∗, 0), approaching
one of the periodic solutions near E1. This follows from center manifold theory and
the reduction principle (see, e.g., Kuznetsov 2004, chapter 5.1): The two-dimensional
boundary face (1, ∗, ∗, 0) is the center manifold at the equilibrium E1. Hence, by
Kuznetsov (2004, Theorem 5.2), the flow near E1 is locally topologically equiva-
lent to the partially linearized flow of (12) together with (13). In particular, E1 is
Lyapunov stable. Actually, every periodic solution in the face (1, ∗, ∗, 0) attracts a
three-dimensional manifold of nearby orbits. Indeed, the two external eigenvalues (Flo-
quet or Lyapunov exponents) along such a periodic solution (with period T ) are given
by

1

T

∫ T

0

(c1−y(t))p dt = (c1−c2)p < 0, and
1

T

∫ T

0

−(1−p)(1−x`(t)) dt = −(1−2p) < 0

(by the averaging property of the replicator dynamics, see Hofbauer and Sigmund
1998, Exercise 10.4.1, or more generally, Theorem 7.6.4), and are equal to the two
external eigenvalues at the equilibrium E1 appearing in (13). Hence, by applying the
reduction principle (Kuznetsov 2004, Theorem 5.3) to the Poincaré return map at any
of the periodic orbits in this two-dimensional face, one obtains an open set in [0, 1]4

containing the (relatively open) face (1, ∗, ∗, 0), where orbits are attracted by one of
the periodic orbits in (1, ∗, ∗, 0).
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Proposition 4 (Replicator dynamics near P1). For the replicator dynamics (11) on
the hypercube [0, 1]4, the equilibrium component P1 is unstable. Nevertheless, it has a
basin of attraction with nonempty interior.

Proof. Near the rest points (0, 0, y, 0) we have the linearized dynamics:

ẋh = (y − c1)p xh

ẋ` = (y − c2)(1− p) x`
ẏ = 0

ẏ′ = (2p− 1) y′ < 0.

(14)

The rest points (0, 0, y, 0) with 0 ≤ y ≤ c1 < c2 are therefore Nash equilibria. For
0 ≤ y < c1, all three external eigenvalues are negative, hence the corresponding point
is a quasistrict Nash equilibrium and attracts a 3-dimensional stable manifold (as a
consequence of the stable manifold theorem). The basin of attraction of the whole
component P1 has nonempty interior. This is again a consequence of the reduction
principle, see, e.g., Kuznetsov (2004, Theorem 5.2), as the line of rest points (0, 0, ∗, 0)
forms the center manifold. But the study of the behavior of the dynamics near the
end point of P1, which we denote by -P1 = (0, 0, c1, 0), shows that the component is
unstable: -P1 has a 2-dimensional stable manifold and a 2-dimensional center manifold,
the latter contained in the 2-dimensional face (∗, 0, ∗, 0) with dynamics

ẋh = xh(1− xh)(y − c1)p,

ẏ = y(1− y)pxh.
(15)

This is the replicator dynamics of a nongeneric 2 × 2 game shown in the top right
square of Figure 3. There is one orbit converging to the endpoint -P1= (0, 0, c1, 0),
and one orbit with -P1 as α–limit which converges to (1, 0, 1, 0), a corner of the face
of E1. This shows that the endpoint -P1 is unstable (unlike all other Nash equilibria
in the component P1) and hence the component P1 itself is unstable.

Proposition 5 (Convergence, Class I.i, 0 < p < 1/2). All orbits in the interior of the
hypercube converge to the set {(xh, x`, y, y′) : (xh = 1 or x` = 0) and y′ = 0}, which
is to say that in the long run, either the high type sends the costly signal s or the low
type does not send it, and in the absence of the costly signal s, player 2 never accepts.

Proof. To prove this, we use two Lyapunov functions. From the first two equations of
(11) we see that

ẋh
pxh(1− xh)

− ẋ`
(1− p)x`(1− x`)

= c2 − c1 > 0. (16)

Therefore:

1

p
[log xh − log(1− xh)]· − 1

1− p [log x` − log(1− x`)]· = c2 − c1 > 0
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and [
xh

1− xh

]1−p [
1− x`
x`

]p
↑ ∞.

Since the numerators are bounded, we infer that

(1− xh)x` → 0, (17)

which implies that all interior orbits converge to the union of the two facets xh = 1
(in Figure 2, the bottom cube) and x` = 0 (the inner cube). Similarly, since p < 1

2 , we
obtain from the last two equations of (11)

[log y − log(1− y) + log y′ − log(1− y′)]· =
ẏ

y(1− y)
+

ẏ′

y′(1− y′) = 2p− 1 < 0, (18)

and hence
yy′ → 0,

which implies that all interior orbits converge to the union of the two facets y = 0 and
y′ = 0. The ω–limit sets must then be contained in the union of the following four
two-dimensional faces, shown in Figure 3:

– (1, ∗, 0, ∗), the lower left square in Figures 3 and 2, on which all interior orbits
converge to (1, 0, 0, 0);

– (1, ∗, ∗, 0), the lower right square in Figure 3 and the lower front square in Figure
2, that is, the face containing E1 and the periodic solutions;

– (∗, 0, 0, ∗), the top left square in Figure 3, and the inner left square in Figure 2, on
which all interior orbits converge to (0, 0, 0, 0); and

– (∗, 0, ∗, 0), the top right square in Figure 3, and the inner front square in Figure 2,
which contains the equilibrium component P1 in an edge.

Actually, we can show that y′ → 0. This can be done in two ways. One is by eliminating
dominated strategies in the original normal form game with payoff matrix in Figure
1. The other way is to directly show that an interior orbit cannot have ω–limit points
with y = 0 and y′ > 0. The ω–limit set of any orbit is a closed, connected, invariant,
and internally chain transitive (ICT) subset (i.e., any two points in it can be connected
by pseudo-orbits), see Benäım (1999, Corollary 5.6). Note that the union of all four
squares in Figure 3 is an ICT set. And many subsets are ICT. Even the whole state
space [0, 1]4 is an ICT set. So this concept by itself is not enough to prove the result.
Suppose the ω–limit set Ω of some interior orbit contains a point with y′ > 0 (i.e.,
in the left half of Figure 3). Then it must contain a rest point in the edge (1, 1, 0, ∗),
and even a continuum {(1, 1, 0, y′) : y′ ∈ [0, ȳ]} of such rest points. Linearization
at these rest points shows that there are two positive eigenvalues (in direction xh
and x`) and one negative eigenvalue (in direction y). Therefore the center manifold
is only one-dimensional and coincides with the edge of rest points. By the reduction
principle, there is an invariant foliation with 3-dimensional leaves transverse to this
edge. However, since Ω contains a continuum of such rest points, the orbit must move
slowly and close along this continuum, a contradiction. So ω–limits are contained in
the union of the two squares on the right of Figure 3.
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p < 1
2

(i) : 0 ≤ c1 < c2 < 1
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1110

1111

0110

0111

-P1
P1

E1

-P1

1010

Fig. 2 Nash equilibria and replicator dynamics for Class I, i (0 ≤ c1 < c2 < 1), 0 < p < 1/2: the
partially revealing equilibrium E1, which sits in the face (1, ∗, ∗, 0) (for a close-up of this face see
Figure 3, bottom right square), and the continuum of equilibria P1, which stretches from the vertex
(0, 0, 0, 0) to the point (0, 0, c1, 0), marked as -P1 in Figure 3 (top right square). Arrows on the edges
show the direction of the flow of the replicator dynamics (11). Edges without arrows consist of rest
points. Also shown: periodic orbits around E1 and the connecting orbit from -P1 to (1, 0, 1, 0).

Remark 1. We conjecture that (almost) all orbits converge either to the supporting
face of E1, in fact to one of the periodic orbits in the supporting face of E1, or to
the component P1. However, this does not follow from the above arguments. There
are many ICT sets in the union of the two squares (right half of Figure 3), e.g., the
heteroclinic cycle 1100 → 1000 → −P1 → 1010 → 1110 → 1100. It is not obvious
whether such heteroclinic cycles can attract orbits from the interior of the hypercube
or not.

1
2 < p < 1: In this case, (11) has the following rest points: all 24 corners of the hyper-
cube, the edges (1, 1, 0, ∗) and (1, 1, 1, ∗), the latter containing the Nash-equilibrium
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xh = 1

x` = 0

y = 0 y′ = 0
1101 1100 1110

1001 1010

0001 0000 0010

1000

P1

E1

Fig. 3 The four two-dimensional faces that attract all interior orbits of the replicator dynamics (11)
for 0 < p < 1/2. Actually, the two on the right attract all of them.

component P2, as well as the edges (0, 0, ∗, 0) and (0, 0, ∗, 1), the latter coinciding with
the Nash-equilibrium component P3, and the Nash equilibrium E2 = (1− 1−p

p , 0, 1, 1−
c1); see Figure 4.

Proposition 6 (Replicator dynamics near E2). For the replicator dynamics (11) on
the hypercube [0, 1]4, E2 is a saddle point within the face (∗, 0, 1, ∗) (lower left square
of Figure 5), and hence unstable. It has a 3-dimensional stable and 1-dimensional
unstable manifold in [0, 1]4.

Proof. E2 is a quasistrict Nash equilibrium, since there, ẋ`

x`
= (c1 − c2)p < 0 and

(1−y)·

1−y = 1 − 2p < 0. We know already from the analysis of the index that E2 is a

saddle point within the face (∗, 0, 1, ∗) (lower left square of Figure 5). It therefore has
a 3-dimensional stable and 1-dimensional unstable manifold in [0, 1]4.

Proposition 7 (Replicator dynamics near P2). For the replicator dynamics (11) on
the hypercube [0, 1]4, the equilibrium component P2 is stable but not asymptotically
stable. Its basin of attraction has nonempty interior.

Proof. Near the rest points (1, 1, 1, y′) we have the linearized dynamics:

ẋh = (1− xh)(1− y′ − c1)p

ẋ` = (1− x`)(1− y′ − c2)(1− p)
ẏ = (1− y)(2p− 1)

ẏ′ = 0.

(19)
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The rest points (1, 1, 1, y′) with 0 ≤ y′ ≤ 1−c2, given that 1−c2 < 1−c1, are therefore
Nash equilibria. For 0 ≤ y′ < 1− c2, all three external eigenvalues are negative, hence
the corresponding point is a quasistrict Nash equilibrium and, as a consequence of
the stable manifold theorem, attracts a 3-dimensional stable manifold. The basin of
attraction of the whole component P2 contains an open set from the hypercube, which
is again a consequence of the reduction principle, see, e.g., Kuznetsov (2004, Theorem
5.2), as the line of rest points (1, 1, 1, ∗) forms the center manifold. Let us now study
the behavior near the end point of P2, which we denote by -P2 = (1, 1, 1, 1− c2). This
point has a 2-dimensional stable manifold and a 2-dimensional center manifold, the
latter contained in the 2-dimensional face (1, ∗, 1, ∗) with dynamics

ẋ` = x`(1− x`)(1− c2 − y′)(1− p),
ẏ′ = y′(1− y′)(1− p)(x` − 1).

(20)

This is the replicator dynamics of a nongeneric 2× 2 game shown in the bottom right
square of Figure 5. Hence P2 is stable (in the 2-dimensional face (1, ∗, 1, ∗) as well
as in the hypercube, by the reduction principle), and all interior orbits starting close
to P2 converge to one of the Nash equilibria in P2, again by the reduction principle.
However, P2 is not asymptotically stable for the replicator dynamics, since the whole
edge (1, 1, 1, ∗) consists of rest points (see the lower right square in Figure 5).

Proposition 8 (Replicator dynamics near P3). For the replicator dynamics (11) on
the hypercube [0, 1]4, the equilibrium component P3 is asymptotically stable. Its basin
of attraction is an open neighborhood of P3.

Proof. Analogously to (19), one can show that each equilibrium in P3 is quasistrict.
So the edge P3 is a curb set (‘closed under rational behavior,’ see Ritzberger, 2002,
section 5.2), and closed under better replies (Weibull, 1995, section 5.7), and hence a
strict NE set. By the reduction principle (or a simple Lyapunov function argument),
P3 is asymptotically stable.

Proposition 9 (Convergence, Class I.i, 1/2 < p < 1). Every orbit in the interior
of the hypercube converges to a Nash equilibrium. (On the boundary, orbits may also
converge to one of the rest points.) The 3-dimensional stable manifold of E2 separates
the basins of attraction of the two equilibrium components P2 and P3.

Proof. We use the same two Lyapunov functions as in the proof of Propositon 5.
However, the expression in (18) is now positive, because p > 1

2 , and hence

(1− y)(1− y′)→ 0.

This means that all orbits converge to the union of the two facets y = 1 (the cube at
the right in Figure 4) and y′ = 1 (the cube in the back). Recall (17), which holds for
all p ∈ (0, 1) and shows convergence to the union of xh = 1 (the bottom cube) and
x` = 0 (the inner cube). Therefore, the ω–limit set of any interior orbit is contained
in the union of the following four two-dimensional faces, shown in Figure 5:
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Fig. 4 Nash equilibria and replicator dynamics for Class I. i (0 ≤ c1 < c2 < 1), 1/2 < p < 1: the
partially revealing equilibrium E2, which sits in the face (∗, 0, 1, ∗) (Figure 5, bottom left square);
the continuum of equilibria P2, which stretches from the vertex (1, 1, 1, 0) to the point (1, 1, 1, 1− c2)
marked as -P2 (Figure 5, bottom right square); and the continuum of equilibria P3, covering the
entire edge from (0, 0, 0, 1) to (0, 0, 1, 1).

– (1, ∗, 1, ∗), the lower right square in Figures 5 and 4, which contains the edge of rest
points (1, 1, 1, ∗), and on which interior orbits converge to one of the Nash equilibria
(1, 1, 1, y′), 0 < y′ < 1− c2, in the equilibrium component P2;

– (1, ∗, ∗, 1), the upper right square in Figure 5, and the lower back square of the
hypercube Figure 4, on which interior orbits converge to the corner (1,0,1,1);

– (∗, 0, 1, ∗), the lower left square in Figure 5, and the inner right square of Figure
4, which contains the saddle point E2, and on which almost all orbits converge
to (0, 0, 1, 1) ∈ P3 or to (1, 0, 1, 0), with E2 on the separatrix, i.e., the manifold
separating the two basins of attraction. Note that (1, 0, 1, 0) is unstable along the
edge (1, ∗, 1, 0), along which there is a connection to (1, 1, 1, 0) ∈ P2.

– (∗, 0, ∗, 1), the upper left square in Figure 5, and the inner back square of Figure 4,
which contains the edge of rest points (0, 0, ∗, 1) = P3, and on which interior orbits
converge to one of the Nash equilibria in P3.

The ω–limit set of an orbit is a closed, connected, invariant, and internally chain tran-
sitive (ICT) subset (i.e., any two points in it can be connected by pseudo-orbits), see
Benäım (1999), Corollary 5.6. The maximal ICT sets in the four squares in Figure 5 are
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y = 1

y′ = 1

x` = 0 xh = 1
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1011

P3

E2

P2

Fig. 5 The four two-dimensional faces that attract all interior orbits of the replicator dynamics (11)
for 1/2 < p < 1. Actually, as shown in Proposition 3, interior orbits converge to either P3, or E2, or
P2.

the three corners 0010, 1001, 1101, the edge (0, 0, ∗, 1) = P3, and the ‘house–shaped’
pentagon (let’s call it H) spanned by the square (1, ∗, 1, ∗), E2, and the orbits connect-
ing 1011 with E2 and 1010. The corners (0, 0, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1),
(1, 1, 0, 1) cannot attract orbits from the interior of the hypercube, since they are not
Nash equilibria. If an ω–limit set Ω of an interior orbit satisfies Ω ⊆ P3, then the
reduction principle implies that ω(x) is one of the NE in P3. If Ω ⊆ H (and Ω 6= {E2}),
then it must contain an equilibrium from P2, and then by the reduction principle, it
is one of the NE (1, 1, 1, y′) with 0 < y′ < 1− c2.

p = 1
2 : In this case, (11) has the following rest points: all 24 corners of the hypercube

(Figure 6), the square (0, 0, ∗, ∗) containing the Nash-equilibrium component P1-E2’-
P3, and the square (1, 1, ∗, ∗) containing the Nash-equilibrium component E1’-P2. In
this case, we first show that every orbit converges to a Nash equilibrium, and then we
discuss the behavior near the two equilibrium components.

Proposition 10 (Convergence, Class I.i, p = 1/2). Each orbit in the interior of the
hypercube converges to a Nash equilibrium, either in P1-E2’-P3 or in E1’-P2.
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Fig. 6 Nash equilibria and replicator dynamics for Class I.i (0 ≤ c1 < c2 < 1), p = 1/2: the
equilibrium component P1-E2’-P3, which corresponds to the pentagon in the face (0, 0, ∗, ∗) given by
the convex hull of (0, 0, 0, 0), -P1 = (0, 0, c1, 0), E2’ = (0, 0, 1, 1 − c1), (0, 0, 1, 1), and (0, 0, 0, 1); and
the equilibrium component E1’-P2, which corresponds to the triangle in the face (1, 1, ∗, ∗) given by
the convex hull of E1’ = (1, 1, c2, 0), (1, 1, 1, 0), and -P2 = (1, 1, 1, 1 − c2). Also shown: two orbits
leading from the component P1-E2’-P3 to (1, 0, 1, 0).

y + y′ = 1

x` = 0 xh = 1
0010 1010 1110

0001 1001 1101

P1-E2’-P3

E1’-P2

Fig. 7 The dynamics for p = 1/2 on the intersection of the two cubes xh = 1 and x` = 0 with the
invariant diagonal y + y′ = 1.
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Proof. For this case, after omitting the common factor 1
2 , the replicator dynamics for

behavior strategies (11) is given by:

ẋh = xh(1− xh)(y − y′ − c1),

ẋ` = x`(1− x`)(y − y′ − c2),

ẏ = y(1− y)[xh − x`],
ẏ′ = y′(1− y′)[−xh + x`].

(21)

From (16) we get with φ(x) = log x
1−x (where φ : (0, 1)→ R is strictly increasing and

bijective)
(φ(xh)− φ(x`))

·
= c2 − c1 > 0

and hence, for some constant C0,

φ(xh(t))− φ(x`(t)) = (c2 − c1)t+ C0

Therefore, along each interior solution, there is a time t0 s.t. φ(xh(t0)) = φ(x`(t0)), and
hence xh(t0) = x`(t0). Then for t > t0: φ(xh(t)) > φ(x`(t)), hence xh(t) > x`(t), and
from (21), ẏ(t) > 0 and ẏ′(t) < 0. Thus y(t) and y′(t) are ultimately monotone, hence
they converge. Therefore, again from (21), xh(t) and x`(t) are ultimately monotone
and hence they converge. So the limit of each interior solution exists, and by the folk
theorem of evolutionary game theory (Hofbauer and Sigmund 1998, Theorem 7.2.1 (b)
or Cressman 2003, Theorem 2.5.3 ii), it must be a Nash equilibrium.

Remark 2. From the last two equations of (21), we get a constant of motion:

[log y − log(1− y) + log y′ − log(1− y′)]· =
ẏ

y(1− y)
+

ẏ′

y′(1− y′) = 0 (22)

and hence, with C > 0 constant,

yy′ = C(1− y)(1− y′). (23)

This provides a foliation of the hypercube into 3d invariant manifolds.

Note also that (21) is symmetric w.r.t. (y, y′) 7→ (1− y′, 1− y). In particular, the
3d set y+y′ = 1 (a ‘diagonal’ of the hypercube) is invariant under the dynamics. This
corresponds to the choice C = 1 in (23). In Figure 7, we visualize the dynamics on
the intersection of this invariant diagonal with the cubes xh = 1 and x` = 0 (which
together attract all interior orbits, as a consequence of (17) again, which holds for all
p ∈ (0, 1)).

The set of Nash equilibria splits into two connected components, each of them
2-dimensional:

E1’-P2 : xh = x` = 1, y′ ≤ y − c2,
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P1-E2’-P3 : xh = x` = 0, y′ ≥ y − c1.

Proposition 11 (Replicator dynamics near E1’-P2). For the replicator dynamics (11)
on the hypercube [0, 1]4, E1’-P2 is stable, but not asymptotically stable. Its basin of
attraction has nonempty interior.

Proof. Since E1’ = (1, 1, c2, 0) and P2 is the line segment from (1, 1, 1, 1) to (1, 1, 1, 1−
c2), the component E1’-P2 is the convex hull of E1’ and P2, a triangle (see Figure 6).
All equilibria with xh = x` = 1, y′ < y− c2 are quasistrict and attract a 2-dimensional
stable manifold, together an open set of orbits in [0, 1]4. In order to prove that the
component is stable we proceed as in the proof of Proposition 7. At a boundary
equilibrium xh = x` = 1, y′ = y − c2 the stable manifold has dimension 1. Inspection
of the dynamics on the 3-dimensional centermanifold (which is contained in the facet
xh = 1) shows that no orbit moves away from the component E1’-P2 and hence it is
stable, compare Figure 7. Since the whole face xh = x` = 1 consists of rest points, the
component E1’-P2 cannot be asymptotically stable.

Proposition 12 (Replicator dynamics near P1-E2’-P3). For the replicator dynamics
(11) on the hypercube [0, 1]4, P1-E2’-P3 is unstable. Nevertheless, it has a basin of
attraction with nonempty interior.

Proof. The component P1-E2’-P3 is the convex hull of P1, E2’ = (0, 0, 1, 1− c1) and
P3, see Figure 6. It is a pentagon with three right angles and a line of symmetry. All
equilibria in this component with xh = x` = 0, y′ > y − c1 are quasistrict and attract
a 2-dimensional stable manifold, together an open set of orbits in [0, 1]4. However, the
component P1-E2’-P3 is unstable. Indeed, the vertex E2’ is unstable: On (∗, 0, 1, ∗)
(the inner right square), there is an orbit from E2’ down to (1, 0, 1, 0) (see Figure 6),
and from there to (1, 1, 1, 0) in the component E1’-P2. Similarly, every point on the
line segment (0, 0, y′+c1, y′) : 0 ≤ y′ ≤ 1−c1 (the edge of the pentagon connecting E2’
with the endpoint -P1 of the component P1) is unstable. From each of these points,
there is a connecting orbit to (1, 0, 1, 0). It looks like a waterfall converging to one
point.

To summarize: For Class I.i (c2 < 1): How does the flow on the hypercube change,
as p goes through 1

2? The flow on xh = x` = 0 (the upper inner square) switches in
the y′ direction from ↓ to ↑, thus replacing the attractor P1 with the attractor P3.
The flow on xh = x` = 1 (the bottom outer square) switches in the y direction from
← to →. All the other arrows on the one-dimensional skeleton of the hypercube stay
the same.

Class I.ii: 0 < c1 < c2 = 1

From (11) we get ẋ` < 0 in (0, 1)4 and ẋ` = 0 if y = 1 and y′ = 0. Hence the ω–limit
of every interior orbit is contained in the union of (∗, ∗, 1, 0) (the front right square)
and (∗, 0, ∗, ∗) (the inner cube).
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0 < p < 1
2 : Here the equilibrium E1 (from Class I.i) moves from a 2-dimensional face

onto the edge (1, ∗, 1, 0) (the right lower front edge connecting the outside to the inner
cube): E1 = (1, p

1−p , 1, 0). The whole edge (1, ∗, 1, 0) consists of rest points of the

replicator dynamics, and these are Nash equilibria if and only if x` ≤ p
1−p . In other

words, E1 is now the endpoint of a one-dimensional component of Nash equilibria,
bounded by E1 and E* = (1, 0, 1, 0), the fully revealing equilibrium. The equilibrium
component E*-E1, and every single equilibrium in it, is stable under the replicator
dynamics, but not asymptotically stable, as it is part of an edge of rest points. Its basin
of attraction has nonempty interior. The other component P1 is again unstable: there
is an orbit in (∗, 0, ∗, 0) (the inner front square) connecting the endpoint of P1 to E*.

1
2 ≤ p < 1: The components P2 respectively E1’-P2, which exist in Class I.i, shrink to
the singleton (1, 1, 1, 0) as c2 ↑ 1. But for c2 = 1, the whole edge (1, ∗, 1, 0) connecting
E* = (1, 0, 1, 0) with (1, 1, 1, 0) consists of Nash equilibria. This component, denoted
by E*-E1-P2, is stable under the replicator dynamics, but not asymptotically stable, as
the entire edge (1, 1, 1, ∗) (as in Class I.i) consists of rest points. The other components
behave as in Class I.i.

Class I. iii: 0 < c1 < 1 < c2

From (11) we get ẋ`/x` < 0 and hence ẋ` ↓ 0 whenever x` < 1. Now the fully revealing
equilibrium E* = (1,0,1,0) is a strict Nash equilibrium, and therefore asymptotically
stable under the replicator dynamics. As c2 increases from the value 1 to values larger
than 1, the one-dimensional component on the edge from E* to (1, 1, 1, 0) shrinks
suddenly to the strict equilibrium E*. The other components behave as in Class I.i
(c2 < 1).

Figure 8 provides an overview of the Nash equilibria and the replicator dynamics in
the hypercube for all three subclasses of Class I. It allows us to follow the change in the
equilibrium structure and the flow of the replicator dynamics on the hypercube along
changes in both parameters: c2 (horizontal) and p (vertical dimension of the ‘group
picture’). From the first row (p < 1/2), we see that the no-signaling–no-acceptance
equilibrium component P1 (with index 0) and its surrounding dynamics are unchanged
through the three values of c2. What changes is the ‘signaling’ component (with index
+1): from E1 over E*-E1 to E*. Similarly, for the second row (p = 1/2), the component
P1-E2’-P3 (with index 0) is unchanged through the three values of c2, and what
changes is the ‘signaling’ component (with index +1): from E1’-P2, over E*-E1-P2, to
E*. For the third row (p > 1/2), the no-signaling–accept component P3 (with index 1)
and the partially revealing E2 (with index −1, a saddle in the dynamics) are unchanged
through the three values of c2, while the ‘signaling’ component (with index +1) changes
from P2, over E*-E1-P2, to E*. In terms of global convergence, the most general result
emerging from our investigation is this: For each of the nine subclasses, all interior
orbits of the replicator dynamics converge to some Nash-equilibrium component or
the union of the two-dimensional faces containing them.
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p < 1
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Fig. 8 Replicator dynamics in the hypercube for all three subclasses of Class I: The first column
shows the class already seen: subclass i, 0 ≤ c1 < c2 < 1, for all three cases of p (Figures 2, 4, 6); the
second column shows subclass ii, 0 ≤ c1 < c2 = 1; and third subclass iii, 0 ≤ c1 < 1 < c2, each for
all three cases of p.

3.4 Best-response dynamics

The best-response dynamics for a two-population game is given by the system of
differential inclusions (see Cressman 2003):

ẋ ∈ BR1(y)− x,

ẏ ∈ BR2(x)− y.
(24)
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In analogy to Lemma 1 on the replicator dynamics (foliation into invariant
manifolds), we have the following projection result for the best-response dynamics.

Lemma 2. Let u : ∆4 → R4 be a payoff function that satisfies u1 +u4 = u2 +u3. Then
x ∈ ∆4 is a best reply, i.e., x ∈ Argmaxz∈∆4

∑4
i=1 ziui, if and only if (x, x′) ∈ [0, 1]2

is a best response, i.e., it maximizes (x, x′) 7→ x(u1−u3) +x′(u1−u2) = x(u2−u4)−
x′(u2 − u1) = . . . , where x = x1 + x2, x

′ = x1 + x3.

Proof. (1, 0, 0, 0) ∈ ∆4 is best response iff u1 ≥ u2 and u1 ≥ u3 iff x = x′ = 1 is best
response in [0, 1]2. And, (0, 1, 0, 0) ∈ ∆4 is best response iff u2 ≥ u1 and u2 ≥ u4 iff
x = 1, x′ = 0 is best response in [0, 1]2, and similarly for the two other cases.

Lemma 2 is related to the behavior of the best-response dynamics in role games
(compare Berger 2001 and Cressman 2003). Together with equations (4) and (6),
Lemma 2 reduces (24) to a best-reponse dynamics on the hypercube [0, 1]4.

Let

H(u) =


1 if u > 0

0 if u < 0

[0, 1] if u = 0

denote the set-valued version of the Heaviside function.

Proposition 13 (Projection of the BR dynamics). For the normal-form game in
Figure 1, the best-response dynamics (24) simplifies to:

ẋh ∈ H(y − c1 − y′)− xh,
ẋ` ∈ H(y − c2 − y′)− x`,
ẏ ∈ H(pxh − (1− p)x`)− y,
ẏ′ ∈ H(p(1− xh)− (1− p)(1− x`))− y′,

(25)

with the state space of this differential inclusion being the hypercube [0, 1]4.

Proof. This follows from Lemma 2 together with equations (4) and (6).

Class I.i: 0 ≤ c1 < c2 < 1

Proposition 14 (BR dynamics, 0 < p < 1
2 ). All orbits of (24) converge to one of the

two Nash-equilibrium components, either to E1 or P1. E1 is asymptotically stable. P1
is unstable, but its basin of attraction has nonempty interior.

Proof. The square {(xh, x`) ∈ [0, 1]2} is divided into three regions: A = {(xh, x`) ∈
[0, 1]2 : pxh − (1− p)x` > 0}, B = {(xh, x`) ∈ [0, 1]2 : 2p− 1 < pxh − (1− p)x` < 0},
and C = {(xh, x`) ∈ [0, 1]2 : p(1−xh)−(1−p)(1−x`) > 0}. For x ∈ A, y increases and
y′ decreases, more precisely, (y, y′) moves straight towards (1, 0). In B, (y, y′) moves
towards (0, 0), and in C towards (0, 1). Similarly, the square {(y, y′) ∈ [0, 1]2} splits
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into three regions: D = {(y, y′) : y′ < y − c2} where (xh, x`) moves straight towards
(1, 1); E = {(y, y′) : y− c1 > y′ > y− c2} where (xh, x`) moves straight towards (1, 0);
and F = {(y, y′) : y′ > y − c1} where (xh, x`) moves straight towards (0, 0). Now,
the region BF is positively invariant, i.e., an orbit that starts there, will stay there in
positive time, and converge straight towards (0, 0, 0, 0) ∈ P1.

But also every other equilibrium (0, 0, y, 0) ∈ P1 (with y ≤ c1) attracts solutions:
Start at any point in (A ∩ B)× F , and move within the set pxh = (1− p)x` straight
towards this equilibrium. Note that the component P1 is unstable, since there is a
solution starting at -P1 = (0, 0, c1, 0) and heading straight towards (1, 0, 1, 0), until it
reaches ( c2−c1

1−c1 , 0, c2, 0) (from where it will finally converge to E1).
It is easy to check that all orbits not converging to the component P1 must ulti-

mately cycle between the four regions BE, AE, AD and BE, thereby moving towards
the 2-dimensional face xh = 1, y′ = 0. This face corresponds to the cyclic 2× 2 game
that supports the quasistrict equilibrium E1. It follows (as in Berger, 2001, Lemma 3)
that all these orbits converge to E1, and E1 is asymptotically stable. Note that orbits
starting from the 2-dimensional set given by pxh = (1 − p)x` and y′ = y − c2 head
straight towards E1.

Proposition 15 (BR dynamics, 1/2 < p < 1). All orbits of (24) converge to one of
the three Nash-equilibrium components, either E2, P2, or P3. E2 is unstable; P2 and
P3 are asymptotically stable.

Proof. The region {(xh, x`, y, y′) ∈ [0, 1]4 : p(1−xh)−(1−p)(1−x`) < 0, y−c2−y′ > 0}
is positively invariant (that is, invariant in the positive time direction) under the best-
response dynamics, and orbits move straight towards the Nash equilibrium (1, 1, 1, 0)
in P2. In the positively invariant region {(xh, x`, y, y′) ∈ [0, 1]4 : 0 < pxh− (1−p)x` <
2p−1, y−c1−y′ < 0} orbits move straight towards the Nash equilibrium (0, 0, 1, 1) in
P3. And in the positively invariant region {(xh, x`, y, y′) ∈ [0, 1]4 : pxh − (1− p)x` <
0, y− c1− y′ < 0} orbits move straight towards the Nash equilibrium (0, 0, 0, 1) in P3.
Furthermore, it is easy to check that both P2 and P3 are asymptotically stable, every
orbit converges to the set of Nash equilibria, and every Nash equilibrium is the limit
of some orbit from the interior. Starting in the three-dimensional set {(xh, x`, y, y′) ∈
[0, 1]4 : 0 < pxh − (1 − p)x` ≤ 2p − 1, y′ = y − c1} allows for the orbit to go straight
towards E2 (but there are other orbits with the same initial condition heading towards
P2 or P3).

Proposition 16 (BR dynamics, p = 1
2 ). All orbits of (24) converge to one of the two

Nash-equilibrium components, either E1’-P2 or P1-E2’-P3. E1’-P2 is asymptotically
stable. P1-E2’-P3 is unstable, but its basin of attraction has nonempty interior.

Proof. The region {(xh, x`, y, y′) ∈ [0, 1]4 : xh < x`, y − c1 − y′ < 0} is positively
invariant under the best-response dynamics, and orbits move straight towards the Nash
equilibrium (0, 0, 0, 1) in P1-E2’-P3. The region {(xh, x`, y, y′) ∈ [0, 1]4 : xh > x`}
is also positively invariant. Orbits starting there enter the subset where y − y′ > c2
where they move straight towards the Nash equilibrium (1, 1, 1, 0) in E1’-P2. It is easy
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to check then that every best-response orbit converges to the set of Nash equilibria,
and for every Nash equilibrium E one can find an orbit starting on the set xh =
x` converging straight to E. Furthermore: In a neighborhood of E1’-P2, ẋh > 0.
Therefore, every orbit starting close enough to this component will reach the region
{(xh, x`, y, y′) ∈ [0, 1]4 : xh > x`} while y − y′ is still larger than c1, and then, as
stated above, will converge back to (1, 1, 1, 0), showing that E1’-P2 is asymptotically
stable. But there are orbits connecting the component P1-E2’-P3 to the component
E1’-P2: Start at a NE on the line segment -P1-E2’, i.e., (0, 0, y, y′) with y − y′ = c1.
Then the high type is indifferent, and there is an orbit heading straight for (1, 0, 1, 0).
This orbit enters the region {(xh, x`, y, y′) ∈ [0, 1]4 : xh > x`, c1 < y − y′ < c2}, and
then enters {(xh, x`, y, y′) ∈ [0, 1]4 : xh > x`, y − y′ ≥ c2}, where it converges straight
towards (1, 1, 1, 0), connecting the component P1-E2’-P3 to the component E1’-P2.
This implies that P1-E2’-P3 is unstable.

These results carry over to the two other cases regarding c2, namely c2 = 1 (ii),
and c2 > 1 (iii), when we identify, for each value of p, the respective +1 equilibrium
components: for 0 < p < 1/2, E1 (i) ‘turns’ into E*-E1 (ii) respectively E* (iii); for
1/2 < p < 1, P2 ‘turns’ into E*-E1-P2 (ii) respectively E* (iii); for p = 1/2, E1’-P2
‘turns’ into E*-E1-P2 (ii) respectively E* (iii).

3.5 Dynamics in the normal form vs. extensive form

The classical interpretation of the replicator dynamics is that the game is played
repeatedly by players drawn at random from a large population, or two large pop-
ulations in the case of asymmetric games, with the average payoff of a strategy
representing the fitness over the lifetime of an individual who carries it and the carriers
of these strategies reproducing proportionally to their fitness based on the biological
transmission of strategies. Alternatively, the replicator dynamics emerges as the limit
of various processes based on imitation of strategies that perform well (see, for instance,
Weibull 1995) or a simple model of reinforcement learning (Börgers and Sarin 1997).

For our games, the difference between the replicator dynamics in terms of strate-
gies in the normal form and behavior strategies in the extensive form of the game
is related to the question of what are the populations within which strategy replica-
tion takes place, and as a consequence what is the form of the behavioral program
that is transmitted. For the dynamics in the normal-form game, the interpretation
is straightforward: There are two populations, the player-1 and the player-2 popula-
tion, within each of which strategy transmission takes place. What is transmitted are
the programs how to behave in each of the possible roles of the respective player, the
two different types (high and low) for player 1, and the two different information sets
(after the expression or the absence of the costly signal) for player 2. This mechanism
fits well to a scenario of biological transmission of strategies: For individuals of the
player-1 population, after strategies have been transmitted, some random mechanism
decides which type they are going to be (high or low), and then, over their lifetime,
they apply the action (s or s̄) that their inherited strategy prescribes for the respec-
tive type. Similarly for individuals of the player-2 population, only that it is not a
random mechanism but the distribution of strategies in the player-1 population that
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decides with which probability they find themselves in which role, that is, in front of
a player 1 who does respectively does not express the costly signal, and conditional
on that situation, they execute the inherited behavioral program.

For the replicator dynamics in terms of behavior strategies, strategies are repli-
cated within the four subpopulations defined by the agents in the extensive form (the
two types for player 1, and the two agents at different information sets for player
2). For the player-1 population that is to say that the type is decided first and that
replication takes place within the two subpopulations. Similarly, for the player-2 pop-
ulation, replication takes place within the two roles, after observation of s respectively
s̄. This 4-population dynamics is easier to interpret in terms of a story of imitation.

4 Variants of the model

The typical application of Class I, characterized by differential costs of producing
the signal, in the spirit of Spence (1973), is educational credentials as a signal for
performance or productivity—the underlying hypothesis being that obtaining a certain
degree is less costly in terms of effort and time for the more productive type.

However, the assumption that the two types face differential costs in producing
the signal is hard to justify in some applications of costly-signaling theory that have
been advanced. This difficulty comes out most clearly when the cost of the signal is
some fixed monetary value. For example: Placing an ad in a newspaper has a price,
but that price usually is a fixed rate and not a function of the quality of the company
or institution that buys the ad. And indeed, models of advertising as a costly signal
(see, for instance, Milgrom and Roberts 1986) usually do not turn on the assumption
of differential costs in producing the signal but are grounded in the idea that different
types have differential benefits when the signal induces the desired action. Class II
captures this mechanism in the context of our simple modeling framework with a
single costly signal.

4.1 Class II: Differential benefits in case of success

In Class II, the production of the signal is of the same cost c > 0 for the two types
of player 1, but the high type gets an extra payoff of d > 0 if the second player takes
action a. The game is shown in Figure 9. This model can be seen as a discrete and
simplified version of Milgrom and Roberts’s (1986) model of advertising as a signal for
product quality, and to some extent, Grafen’s (1990) formalization of the Handicap
Principle. In Milgrom and Roberts’s model, the idea is that a high-quality product, if
consumed once, will attract more consumption in the future, and therefore the firm
providing it will profit more from a first sale than a firm with a lower-quality product.
In Grafen’s model, the argument of differential payoffs for different types of player 1,
when player 2 accepts, appears implicitly in the form of assumptions on the derivatives
of the payoff functions.
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Fig. 9 Class II. At the top, the game in extensive form; at the bottom, the game in normal form
resulting from that extensive-form game.

4.2 Class I and II are structurally equivalent

A convenient circumstance links Class II to Class I: Provided that c and d are positive,
which we assume, games in Class II have the same equilibrium structure as those in
Class I :

(i) If 0 < c < 1, the equilibrium structure of Class II is as that of Class I when
c1 < c2 < 1;

(ii) if c = 1, as that of Class I when c1 < c2 = 1; and
(iii) if 1 < c ≤ 1 + d, as that of Class I when c1 ≤ 1 < c2.

The numerical values defining the equilibria of Class II can be obtained by those of
Class I by substituting c1 by c/(1 + d) and c2 by c. These values can be interpreted
in a meaningful way: Let us call the relative net cost of s for type t (relative to not
using s) the payoff of type t when he does not use s and player 2 in response does not
accept minus his payoff when he uses s and player 2 in response, nevertheless, does
not accept, πt(s̄, ā) − πt(s, ā), over the payoff difference when he uses s and player 2
does respectively does not accept, πt(s, a)− πt(s, ā):

relative net cost of s for type t =
πt(s̄, ā)− πt(s, ā)

πt(s, a)− πt(s, ā)
. (26)

Then, in Class I, the relative net cost of s for the high type is c1, and for the low
type c2; and, in Class II, the relative net cost of s for the high type is c/(1 + d), and
for the low type c. Both Class I and Class II then can be said to be characterized by
differential relative net costs of the signal s.
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The structural equivalence of the two classes can be explained in the following
way:2 Once the parameter changes indicated above are made, the game given a low
type is the same in Class I and Class II, and the game given a high type in Class II is
a rescaling of the game given a high type in Class I, namely if in the payoff function
for the high type c1 is replaced by c/(1+d) and the entire function is premultiplied by
(1 + d). This explains why, while games of Class II, as a whole, are strictly speaking
not rescaled versions of games of Class I, they nonetheless have the same equilibrium
structure.

4.3 The replicator dynamics for Class II

For Class II, the payoffs for player 1 against mixed strategies of player 2 are given by

u1(ss,y) = (1 + pd)y − c,
u1(ss̄,y) = −pc+ p(1 + d)y + (1− p)y′,
u1(s̄s,y) = (1− p)(y − c) + p(1 + d)y′,

u1(s̄s̄,y) = (1 + pd)y′.

(27)

Again (4) holds. For player 2 the payoffs are the same as in (5). Thus, the analog of
(11), i.e., the replicator dynamics for behavior strategies, is now given by

ẋh = xh(1− xh)[(1 + d)(y − y′)− c]p,
ẋ` = x`(1− x`)[y − y′ − c](1− p),
ẏ = y(1− y)[pxh − (1− p)x`],
ẏ′ = y′(1− y′)[p(1− xh)− (1− p)(1− x`)].

(28)

This is essentially the same as the replicator dynamics for Class I with c1 = c
1+d and

c2 = c, except that the speed of xh is multiplied by (1 + d).

4.4 Class I or II, or a combination?

In some phenomena, both the conditions of Class I and of Class II might come in.
Education is a case in point. If a certain educational credential is costly not only in
terms of effort but also in terms of money, it can also come to function as a signal in
the sense of Class II. Having been to a certain school then becomes a signal of wealth
or a signal for future performance and commitment. It is as if the prospective employee
were saying: “It pays off for me to have invested into my degree, because once I get
hired, I know that I will perform well and therefore not lose my job quickly, and so
the initial investment in my degree pays off for me.” Another example is dress as a
costly signal: Having a good suit or dress or shoes is expensive (a signal in the sense
of Class II), but wearing them might, under certain circumstances, also be a physical
effort that different individuals might master in different degrees (a signal in the sense
of Class I).

2We would like to thank a reviewer of this journal for having shared this observation with us.
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If, for a certain application, both aspects are relevant and one is interested in
a finer-grained analysis, one can set up a combined model with differential costs of
producing the costly signal, c1 and c2, and an extra payoff d for the high type if player
2 takes the desired action. In such a combined model, the relative net cost of s for the
high type will be c1/(1 + d), and for the low type c2. The equilibrium structure will
then be as in Class I only with c1 replaced by c1/(1 + d).

The advantage of considering Class I and II as two separate models first is both
of practical as well as analytical nature: It is certainly more convenient to work with
Class I first, instead of starting out with the combined model and conducting the anal-
ysis within that framework; not least because it is much easier to carry c1 through
all numerical expressions, tables, and graphs, than c1/(1 + d). But, besides that, we
also gain deeper insight into the mechanism of costly signaling by considering Class
I and Class II in isolation, as it shows that each of the two classes represents min-
imal conditions under which costly-signaling phenomena can be accounted for. If the
assumptions of both classes apply, the resulting equilibrium structure will have the
same qualitative properties as those of Class I and Class II in isolation, and hence
the same explanatory potential. But we do not need both of these assumptions to get
these qualitative properties of the model: One of them, different costs in production
or differential benefits from acceptance for the high type, is sufficient.

5 Classical belief-based equilibrium refinements in
signaling games

The multiplicity of equilibria in signaling games and the question of which equilibrium
outcomes should be considered plausible predictions of the model have been extensively
discussed in classical game theory. In view of a unification of the field, we find it useful
to compare our results to this approach of equilibrium refinement.

Sequential Bayesian Nash equilibrium (Kreps and Wilson 1982) requires that play-
ers update their beliefs over the possible states of nature according to Bayes’ law along
the equilibrium path. However, it does not—at least not for the class of games to which
belong signaling games—impose any restrictions on beliefs off the equilibrium path,
that is, an information set that could in principle be reached but that is not reached
in the equilibrium under study—a counterfactual situation. In signaling games, an
information set off the equilibrium path is one after a signal that is in principle part
of the game but that is not used in the equilibrium under consideration. In the games
studied here, this concerns equilibrium outcomes in which both types of player 1 use
the same signal, such as P1 (both types using s̄), P2 (s), and P3 (s̄).

Classical refinements of sequential Bayesian Nash equilibrium operate on the
principle of imposing restrictions on players’ beliefs off the equilibrium path. Such
restrictions, so to say, come to complement Bayes’ law where it is not defined, and
thereby refine the Bayesian Nash equilibrium notion. Depending on what is consid-
ered a plausible restriction on beliefs off the equilibrium path, there is an entire family
of such refinement concepts. Prominent in the literature are: the never-a-weak-best-
response criterion (Kohlberg and Mertens 1986), ‘divinity’ (Banks and Sobel 1987),
and the intuitive criterion (Cho and Kreps 1987).
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When using this kind of refinement to select equilibria, one point should be noted
from the beginning: Fully revealing equilibria such as E* and partially revealing equi-
libria such as E1 or E2 trivially survive any refinement based on restrictions on beliefs
off the equilibrium path—simply, because there is no signal off the equilibrium path.

5.1 The never-a-weak-best-response criterion and ‘divinity’

For the class of games studied here, the never-a-weak-best-response criterion (Kohlberg
and Mertens 1986) requires that after a signal off the equilibrium path, the support
of the belief of the player acting at this information set should not contain types for
whom that off-the-equilibrium-path signal is never (that is, for no reaction of player
2 to the off-the-equilibrium-path signal that supports the equilibrium outcome under
study) an alternative best response relative to the signal used in the equilibrium under
consideration. It is straightforward to check that for games with two states, two signals,
and two possible reactions to signals, ‘divinity’ as defined by Banks and Sobel (1987)
coincides with this criterion.

By this requirement, the equilibrium outcome P1, in which both types take s̄, as
well as outcomes in P1-E2’-P3 for which y′ ∈ [0, 1 − c1) (the part of the component
that stretches from outcomes ‘similar’ to P1 to outcomes ‘similar’ to E2’, excluding
those ‘similar’ to E2’) are discarded. The argument for P1 is this: Within P1 there
is one equilibrium, namely the one where player 2 in response to s takes a with a
probability of exactly c1 (the endpoint of that component, marked -P1 in Figure 2),
in which for the high type taking s is indeed an alternative best response relative to
taking s̄. For the low type, there is no such point. Hence, after s, the low type has to
be discarded from the support of the belief, and therefore a probability of 1 has to
be attributed to the high type. But then, after s, player 2 should take a for sure (and
not with a probability of c1 at most), and this will upset the equilibrium outcome
under study. Hence: P1 is not robust under the never-a-weak-best-response criterion.
A similar argument holds for outcomes in P1-E2’-P3 for which y′ ∈ [0, 1− c1).

All other equilibrium outcomes satisfy the never-a-weak-best-response criterion:

• The fully revealing equilibrium E* as well as partially revealing equilibria of the
form of E1 or E2 survive any refinement based on restrictions on beliefs off the
equilibrium path—trivially, because there is no signal off the equilibrium path.

• For P2 the argument, briefly sketched, is this: After s̄, which here is off the equi-
librium path, the never-a-weak-best-response criterion discards the high type and
hence imposes a belief of 1 on the low type. But this is perfectly in line with the
behavior strategies of player 2 that support the equilibrium outcome under study,
which all require that in response to s̄ player 2 takes ā with a probability of c2 at
least!

• The equilibrium outcome P3 is stable under any refinement that restricts beliefs
off the equilibrium path, for the simple reason that any reaction of player 2 to the
off-the-equilibrium path signal s supports the equilibrium outcome. And, a similar
argument applies to equilibrium outcomes in the component P1-E2’-P3 for which
y′ ∈ [1− c1, 1] (the part of the component that stretches from outcomes ‘similar’ to
E2’ to outcomes ‘similar’ to P3).
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5.2 The intuitive criterion

The intuitive criterion (Cho and Kreps 1987), probably the most prominent refinement
of sequential Bayesian Nash equilibrium for signaling games, discards a type from the
support of the belief after an off-the-equilibrium-path signal only if for every possible
reaction of player 2 to the off-the-equilibrium-path signal that type is strictly worse
off than in the equilibrium outcome under study. This is generally less restrictive than
the never-a-weak-best-response criterion, respectively ‘divinity,’ and, for the games
studied here, has indeed less selective force. It is straightforward to check that when
c2 < 1 (Class I.i) or c2 = 1 (Class I.ii), P1 and equilibrium outcomes in P1-E2’-P3
for which y′ ∈ [0, 1 − c2] survive under the intuitive criterion (because the low type
could profit from a deviation if player 2 were to accept in case she observes the signal).
Only when c2 > 1 (Class I.iii), that is, when the cost of the signal for the low type is
strictly higher than the benefit from being accepted, the intuitive criterion will discard
the no-signaling–no acceptance equilibrium outcome P1, respectively the outcome in
P1-E2’-P3 for which y′ = 0 (because then the low type cannot possibly get a higher
payoff from deviating from s̄ to s). This last case reflects the selection result that Cho
and Kreps achieve with the intuitive criterion in their variant of Spence’s model.

Tables 1, 2, and 3 summarize these results, which all carry over to Class II.

5.3 Comparison: Index vs. classical refinements

Comparing equilibrium-selection results based on the necessary condition for evolu-
tionary stability of an index equal to +1 with belief-based refinements (see Tables
1, 2, and 3), one gets the following implication: Whenever an equilibrium outcome is
discarded by the never-a-weak-best-response criterion, respectively ‘divinity,’ then the
equilibrium component in which it sits has an index of 0, hence different from +1,
and therefore cannot be asymptotically stable under any evolutionary dynamics. This
concerns two cases: First, P1, which exists in any of the subclasses i–iii (Tables 1–3)
when the prior is below the critical value p < 1/2. Second, some of the equilibrium
outcomes in the component P1-E2’-P3, which exist in any of the subclasses i–iii in the
knife-edge case p = 1/2, namely those for which y′ ∈ [0, 1 − c1), casually speaking,
outcomes reaching from those similar to P1 to those similar to E2’, excluding those
similar to E2’.

But there are equilibrium outcomes sitting in an equilibrium component with
an index 6= +1, hence a component that cannot be asymptotically stable under
any evolutionary dynamics, that do satisfy the never-a-weak-best-response criterion,
respectively ‘divinity.’ This concerns two cases: First, the partially revealing equilib-
rium E2, with index −1, which exists in any of the three subclasses i–iii when the prior
is above the critical value p > 1/2. Second, in the knife-edge case p = 1/2, the rest of
the outcomes in P1-E2’-P3, namely those for which y′ ∈ [1− c1, 1], casually speaking,
outcomes reaching from those similar to E2’ to those similar to P3.

All in all then, the necessary condition for asymptotic stability of an index equal
to +1 has a bit more selection force than the belief-based refinements considered here:
It allows us to discard all equilibrium outcomes that are also discarded by the never-
a-weak-best-response criterion respectively ‘divinity,’ namely, P1 and the outcomes
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in the component P1-E2’-P3 for which y′ ∈ [0, 1 − c1), and, in addition to that, E2
and the rest of the outcomes in P1-E2’-P3. To put this into perspective, one should
keep in mind that an equilibrium like E2 cannot possibly be discarded by any of the
belief-based refinements considered here—simply because there is no signal off the
equilibrium path, and that the case in which P1-E2’-P3 exists, namely p exactly equal
1/2, is in some sense not generic—at least in the sense that it produces equilibrium
components that harbor different equilibrium outcomes. More specifically, P1-E2’-P3
shows the peculiar case that an equilibrium component, which has one index only
(here 0), harbors different equilibrium outcomes that do not agree on the belief-based
refinements that they fulfill.

In terms of the qualitative properties of the equilibria selected, these results imply
the following: For the case that the prior probability of the high type is below the
critical value, p < 1/2, both the necessary condition for asymptotic stability of having
an index of +1 and the strongest belief-based refinements considered here (the never-a-
weak-best-response criterion and ‘divinity’) coincide and select equilibrium outcomes
in which the costly signal is partially revealing or fully revealing (depending on the
case regarding c2) over the co-existing, Pareto-inferior, no-signaling–no-acceptance
equilibrium outcome P1 (see section 2.4 for a discussion of the welfare properties of
equilibria).

For the case that the prior probability of the high type is above the critical value,
p > 1/2, neither the index, nor the belief-based criteria considered here discriminate
between the all-signaling–accept equilibrium outcome P2 (respectively outcomes in
E*-E1-P2 or E*, depending on the case regarding c2) and the co-existing, Pareto-
dominant, no-signaling–accept equilibrium outcome P3: both have index +1 and
survive under all belief-based refinements considered here.

5.4 Comparison: Evolutionary stability vs. index

The family of costly-signaling games studied here illustrates that having an index of
+1 is indeed only a necessary but not sufficient condition for the respective equilib-
rium component to be asymptotically stable under a specific dynamics: E1 and E*-E1
(structurally the same component in subclasses i and ii, for the case that p < 1/2; see
Tables 1 and 2), P2 and E*-E1-P2 (structurally the same component in subclasses i
and ii, for the cases that p > 1/2) and E’-P2, and E*-E1-P2 (structurally the same
component in subclasses i and ii, for the cases that p = 1/2) are only Lyapunov sta-
ble under the replicator dynamics but asymptotically stable under the best-response
dynamics. In contrast to that, the fully revealing equilibrium E*, which exists only
in subclass iii, but then for all values of p (Table 3), and P3 (which exists in all sub-
classes i–iii when p > 1/2) are asymptotically stable under both the replicator and
the best-response dynamics.

On the other hand, equilibrium components with index 0, namely P1, which exists
for all subclasses i–iii, when p < 1/2, and P1-E2’-P3, which exists for all subclasses
i–iii, when p = 1/2, or with index −1, namely E2, which exists for all subclasses
i–iii, when p > 1/2, are unstable—under both the replicator and the best-response
dynamics.
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A qualitative property of the replicator as well as the best-response dynamics that
deserves special attention (because the wording suggests otherwise) is that not only
the locally stable components P2 and E*-E1-P2 but also the unstable components P1
and P1-E2’-P3 have basins of attraction with nonempty interior, which is to say that
there is a non-negligible set of initial conditions for which the dynamics converges to
these components. What distinguishes unstable components like P1 and P1-E2’-P3
from stable but not asymptotically stable components like P2 and E*-E1-P2 is that
there is at least one state from where the dynamics leads away from the component:
for P1, this is the endpoint of the component marked as -P1 (Figure 2); for P1-E2’-P3,
it is the boundary segment connecting the point marked as -P1 to the point marked as
E2’ (Figure 6). The usual interpretation of this form of instability is that the respective
component is not stable under random drift among strategies already present in the
population, that is, shifts inside the component. But this is to say that equilibrium
components showing this form of instability cannot be completely excluded from an
evolutionary point of view—at least not in the short or medium run when forces of
random drift are weak relative to the pressures of selection.

The only equilibrium that can effectively be ruled out from an evolutionary point
of view is the partially revealing equilibrium E2 with partial pooling in s̄, which is a
saddle. Remarkably, this equilibrium cannot possibly be excluded by any refinement
that relies on restrictions on beliefs off the equilibrium path—because all signals are
‘on the path.’

6 Summary and conclusions

This paper analyzes evolutionary dynamics in a family of costly-signaling games with
two types, two signals, and two actions in response to signals, extending on results
by Zollman, Bergstrom, and Huttegger (2013). Tables 1, 2, 3 and Figure 8 provide an
overview and quick access to our main findings.

Our study is an extension of previous studies in several respects: First, as far
as the cases covered go: Within the two basic classes considered also by Zollman,
Bergstrom, and Huttegger, differential costs in producing the signal (Class I; Section
2) and differential benefits when the signal has the desired effect (Class II; Section
4), we distinguish three paradigmatic cases of the cost of the signal for the low type
(subclasses i–iii); and, within each of these subclasses, three exhaustive cases regarding
the prior probability distribution over types: p smaller than, equal to, and larger than
1/2, leading all in all to nine cases. Second, in terms of the detail of the analysis:
For both the replicator and the best-response dynamics, we explicitly relate the two-
population dynamics in the normal-form game to the four-population dynamics based
on behavior strategies in the extensive form, showing that the second corresponds
to the first on a specific invariant manifold, which we study in detail for each of
the nine cases, discussing local stability around the fixed points as well as global
convergence. Finally, we connect the analysis of the dynamics to other methods of
equilibrium refinement: index theory (Section 3.1) and the important research program
on belief-based refinements in signaling games (Section 5).
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The aim of such an integrative approach is theoretical clarification but also applica-
bility. The detailed case distinction allows researchers exploring applications to quickly
identify the class (or classes) relevant for the problem at hand and to make use of the
results.

The workhorse of our investigation is subclass i (Table 1), the case where the cost of
the signal for the low type is strictly between 0 and 1 (what he gains when accepted),
where, as a consequence, fully revealing equilibria do not exist: a case often neglected
in the literature (particularly under the assumption of a high prior, p > 1/2). As a
way of summarizing, we give an outlook on the explanatory potential of our results
for that case.

6.1 Beyond fully revealing equilibria: periodic orbits around
partially revealing equilibria

Partially revealing equilibria in the style of E1, which exist in the case that the cost
of the signal for the low type is strictly between 0 and 1 (subclass i, Table 1) and the
prior on the high type is below the critical value 1/2, show an interesting pattern when
it comes to explaining features of social meaning systems: The costly signal does not
perfectly reveal the sender’s type but still pushes the belief that it is the high type up
to a certain level, in precisely such a way as to leave the receiver indifferent between
accepting and not accepting. The costly signal, so to say, functions as a means to
‘tune’ the belief of the other.

This kind of equilibrium could be used, for instance, as a model of indirect—‘off-
record’—speech, that is, speech acts the intended meaning of which diverges from its
literal meaning and that rely on the hearer’s interpretation to get the speaker’s purpose
conveyed (Brown and Levinson, 1987). Pinker and coauthors (2007, 2008) suggest that
the function of indirect speech is to avoid common knowledge of the type of the speaker
while transferring the responsibility to accept or not the desired relationship change
to the receiver (in our model, to get accepted, hired, etc.), which gives the speaker
the chance to achieve the desired relationship change at least sometimes. Equilibria of
the form E1 mimic this feature quite accurately: Using the costly signal avoids giving
player 2 sure knowledge about player 1’s type, and hence prevents player 1’s type from
being commonly known, however not because it would leave player 2 in ambiguity
about player’s type, but because it sets player 2’s belief about player 1’s type equal to
a certain value, here 1/2, such that player 2 is indifferent between her possible actions.
In such a situation, player 1 effectively puts it into the hands of player 2 how to react:
to take the responsibility to accept or to decline. Player 2, then—because we are in
equilibrium—at hearing the costly signal accepts with a certain probability, namely
such as to make the low type of player 1 indifferent between using the costly signal
and not using it. The absence of the costly signal, instead, perfectly reveals the low
type, and hence frees player 2 of the responsibility to take any strategic decision in a
non-trivial sense—because when she sees that the costly signal has not been expressed,
her best response is unique: not to accept.

How well can such a partially revealing equilibrium like E1, in which the proba-
bilistic strategies (frequencies of the strategies in the population), defining it have to
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hold exactly, mimic reality? One might question if players ever ‘hit’ the right propor-
tions. What might be more realistic is that players get these proportions approximately
right—that the frequencies in the population are approximately right—and that they
cycle around them. Interestingly, this is the pattern that the replicator dynamics
shows close to that equilibrium: E1 is surrounded by periodic orbits (see Figure 2).
Once the replicator dynamics has come close to it, it will land on a closed orbit—a
‘cycle’—around it in its supporting face. The best-response dynamics mimics a process
of tâtonnements around that equilibrium, ultimately converging towards it.

6.2 Co-existence of no-signaling and all-signaling equilibria

The case that in subclass i (Table 1) the prior on the high type is above the critical
value at which player 2 accepts 1/2 is hardly ever considered in studies of costly
signaling. Unjustly, though, because it shows an interesting equilibrium pattern too:
the coexistence of the all-signaling–accept P2 and the no-signaling–accept P3, both
stable under belief-based refinements as well as under the replicator and the best-
response dynamics. Such a multiplicity of solutions is not necessarily a shortcoming of
the model, or the refinement methods employed, but might mimic reality. The study
of social meaning systems provides numerous illustrations for the phenomenon that
different conventions co-exist in different societies. Politeness is a case in point. The
equilibrium outcome P2 could model a society where conventionally everybody uses
the polite form to make some social exchange happen: overstatement; while P3 could
stand for a society where conventionally nobody uses the polite form to make that
same exchange happen: understatement.

Besides that, the co-existence of the two equilibrium outcomes P2 and P3 could also
serve as explanation of some form of indirect discrimination based on costly signaling,
namely when these two signaling conventions are in place for two different subgroups
within the same community that are defined by some observable trait that is not a
matter of choice (such as assigned sex or skin tone) and that does not affect the prior
probability of the unobservable trait in question, which, however, makes it possible
that the action of player 2 is conditioned on it.

In a biological context, the co-existence of P2 and P3 could explain why certain
handicaps that transmit no information at all (because the entire population expresses
them) might persist in one population (P2) but not in another (P3).

All in all, subclass i, the case where signaling costs for both types are strictly
below the gains of acceptance, is a useful tool for investigating expressions of
costly-signaling mechanisms—and their dynamics—that manifest themselves through
signaling patterns other than fully revealing equilibria.
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