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a b s t r a c t

The diversification of languages is one of the most interesting facts about language that seek

explanation from an evolutionary point of view. Conceptually the question is related to explaining

mechanisms of speciation. An argument that prominently figures in evolutionary accounts of language

diversification is that it serves the formation of group markers which help to enhance in-group

cooperation. In this paper we use the theory of evolutionary games to show that language diversifica-

tion on the level of the meaning of lexical items can come about in a perfectly cooperative world solely

as a result of the effects of frequency-dependent selection. Importantly, our argument does not rely on

some stipulated function of language diversification in some co-evolutionary process, but comes about

as an endogenous feature of the model. The model that we propose is an evolutionary language game in

the style of Nowak et al. (1999) [The evolutionary language game. J. Theor. Biol. 200, 147–162], which

has been used to explain the rise of a signaling system or protolanguage from a prelinguistic

environment. Our analysis focuses on the existence of neutrally stable polymorphisms in this model,

where, on the level of the population, a signal can be used for more than one concept or a concept can

be inferred by more than one signal. Specifically, such states cannot be invaded by a mutation for

bidirectionality, that is, a mutation that tries to resolve the existing ambiguity by linking each concept

to exactly one signal in a bijective way. However, such states are not resistant against drift between the

selectively neutral variants that are present in such a state. Neutral drift can be a pathway for a

mutation for bidirectionality that was blocked before but that finally will take over the population.

Different directions of neutral drift open the door for a mutation for bidirectionality to appear on

different resident types. This mechanism—which can be seen as a form of shifting balance—can explain

why a word can acquire a different meaning in two languages that go back to the same common

ancestral language, thereby contributing to the splitting of these two languages. Examples from

currently spoken languages, for instance, English clean and its German cognate klein with the meaning

of ‘‘small,’’ are provided.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Language is our legacy, language is what makes us uniquely
human. And yet we can communicate effectively only with those of
our conspecifics who have grown up in the same linguistic commu-
nity, typically the same geographical region. There are at present
about 7000 languages spoken in the world (Lewis, 2009). Languages
differ at all levels of linguistic expression: the lexicon, morphology,
phonology, syntax, semantics. From an evolutionary point of view, the
differentiation and diversification of languages are one of the most
interesting facts about language that seek explanation (see, for
example, Hurford, 2003 or the recent target article and debate in
Evans and Levinson, 2009). Conceptually, the question is related to

explaining mechanisms of speciation (for an overview of models of
speciation see, for example, Gavrilets, 2004).

Evolutionary accounts of the origin of language typically evoke
the communicative function of language—language helps us to
exchange information about the world, enhances cooperation,
and thereby increases fitness. It has been argued that functional-
ist–adaptionist approaches to language make it difficult to
account for the fact that natural human languages have always
tended to diversify into dialects and eventually split into separate
and mutually unintelligible languages.1
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1 See, for example, Piattelli-Palmarini (2000), who expresses this critique

most explicitly: ‘‘Different human communities speak different and, for the most

part, not mutually understandable languages. This fact is a mighty challenge to all

naive functionalist and adaptionist explanations of the origins and structure of

language. Had language been the result of the need to communicate, then

linguistic diversity should not have been possible.’’
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An argument that has been advanced in an evolutionary
context to explain language diversification is that it serves the
formation of group markers which can be exploited to enhance
in-group cooperation (for example, Dunbar, 1998). Ultimately this
argument boils down to postulating that there is a function, or if
one wishes, a preference for diversity.

In this paper we use the theory of evolutionary games to show
that language diversification on the level of the meaning of lexical
items can come about in a perfectly cooperative world—a world
where everybody wants to cooperate with everybody—solely as a
result of the effects of frequency-dependent selection. Importantly,
our argument does not rely on some stipulated function of
language diversification, but comes about as an endogenous
feature of the model.

1.1. Language change

Language change, like biological evolution, can be understood
as a process of descent with modification. While it affects all
levels of linguistic description (sound, grammar, lexicon, mean-
ing), a good way of appreciating its effects is to look at word pairs
such as Modern English clean and Modern German klein:
systematic correspondences between their sound structures
prove that they derive from a common ancestor in what once
must have been a single language (in this case West Germanic).
Yet English clean means ‘‘clean’’ while German klein means
‘‘small.’’ Thus, either one or both words must have adopted a
new meaning and thereby contributed to splitting West Germanic
into English and German. Table 1 contains some more well
documented examples of cognates in Modern English and Modern
German that exhibit a shift in meaning.

While there is a huge discussion among linguists about what it
is that makes a language, and what it is that all languages have in
common (see, for example, Evans and Levinson, 2009), most
linguistic theories, if not explicitly so tacitly, postulate form-
meaning correspondences (lexical mappings in the narrow sense
but also form-meaning correspondences that encode a gramma-
tical feature like markers of tense, mood, etc.) as a basic building
block of language. A major reason why linguistic change is
notoriously difficult to account for is that it affects both changes

of form (for example, changes in the sound shape of lexical items)
and changes in meaning (which form is mapped to which concept).
In this paper, we will focus on change in the meaning of lexical
items while abstracting from changes in the form of lexical items.
For the example given above this means that we look at clean and
klein as two instances of the same form, and wish to account for
the fact that they acquire a different meaning in two languages
that go back to a common ancestral language.

1.2. Language games

The model that we present is an evolutionary language game in
the style of Nowak et al. (1999), which has been proposed as a
model for the evolution of a signaling system or protolanguage,
that is, a collection of form-meaning correspondences (see also,
Nowak and Krakauer, 1999; Trapa and Nowak, 2000; Komarova
and Nowak, 2001; Nowak et al., 2002; Komarova and Niyogi,
2004). Evolutionary game theory (Maynard Smith and Price,
1973; Maynard Smith, 1982; Hofbauer and Sigmund, 1988,
1998; Weibull, 1995; Cressman, 2003; Nowak, 2006; Sandholm,
2011) provides a formal framework for studying frequency-
dependent selection. Language is a typical case where the perfor-
mance or fitness of a type depends on the frequencies of the other
types present in the population; it therefore naturally lends itself
to an analysis in terms of evolutionary games.

In the Nowak et al. language game the evolving entities—

strategies—are lexical mappings. More precisely, a strategy is a
pair of two mappings: a mapping from the set of concepts to the
set of available signals (a strategy in the role of the sender), and a
mapping from signals to concepts (a strategy in the role of the
receiver). Signals are of no cost and the concepts to be potentially
communicated are of no differential weight. There is a homo-
geneous population of individuals with perfectly coinciding
interests, and whenever two individuals correctly communicate
a concept, this will give both of them a positive payoff which
translates into an incremental fitness advantage. Similar formula-
tions of this model can be found in Lewis (1969)—see also Skyrms
(1996, 2002)—and Hurford (1989); extensions have been studied
in Nowak et al. (1999), Donaldson and Lachmann (2007), Jäger
(2008), and Hofbauer and Huttegger (2008).

Provided that there is the same number of signals as there are
concepts to be potentially communicated, an optimum signaling

system or optimum protolanguage is a pair of mappings such that
each concept is bijectively linked to one signal and vice versa, and
an optimum in the population will be attained if one such
signaling system has become fixed in the population.

In Lewis (1969), one can find the idea that some kind of
trial-and-error process that operates in a population of agents will
lead to the emergence of such an optimum signaling system.
Lewis—who writes just before the advent of evolutionary game
theory—motivates this by the ‘‘salient’’ character of these strate-
gies. Later, when Lewis’ model has been taken up under the use of
methods which in the meantime had been introduced by evolu-
tionary game theory, it has been shown that there is indeed
a formal foundation for the selection of optimum signaling
systems: optimum signaling systems are the only evolutionarily

stable strategies in this game (Wärneryd, 1993; see also Trapa and
Nowak, 2000). However, computer experiments with this
model have given rise to the conjecture that some form of
suboptimality—as expressed by one signal being used for more
than one concept or one concept being inferred by more than one
signal—can have some form of evolutionary stability (see, for
example, Nowak and Krakauer, 1999). More recently it has been
shown analytically that for this game some well-defined evolu-
tionary dynamics, most importantly the replicator dynamics

(Taylor and Jonker, 1978), will indeed not almost always converge
to an optimum signaling system, but instead can lead to
suboptimum states where on the level of the population’s average
strategy—the idealized ‘‘language’’ of the population—two or
more concepts are linked to the same signal, or where two or
more signals are linked to the same concept (Huttegger, 2007;
Pawlowitsch, 2008). While such states are not evolutionarily stable

in the strict sense as defined by Maynard Smith and Price (1973),
they do satisfy a weaker version of this notion known as neutral

stability or weak evolutionary stability (Maynard Smith, 1982;

Table 1
Cognates in Modern English and Modern German

exhibiting a shift in meaning.

English German

dish Tisch (‘‘table’’)

knave Knabe (‘‘boy’’)

knight Knecht (‘‘servant’’)

tide Zeit (‘‘time’’)

town Zaun (‘‘fence’’)

to starve sterben (‘‘to die’’)

to worry würgen (‘‘to retch’’)

to reckon rechnen (‘‘to calculate’’)

clean klein (‘‘small’’)

silly selig (‘‘blessed’’)

true treu (‘‘faithful’’)

C. Pawlowitsch et al. / Journal of Theoretical Biology 287 (2011) 1–122
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Thomas, 1985). Neutrally stable states are Lyapunov stable in the
replicator dynamics (Bomze and Weibull, 1995), which is why the
replicator dynamics can be blocked in these suboptimum states.

Ensuing research on the Lewis–Hurford–Nowak language game
has a good part focused on the question whether some other dynamic
processes, or perturbations of the replicator dynamics, will or will not
lead to the rise of an optimal signaling system (for an overview of this
literature, see, for example, Huttegger and Zollman, 2011). What has
received much less attention so far—but which, in our mind, leaves a
number of questions to be investigated from a linguistic point of
view—is the fact that neutral stability supports polymorphic states

where different types resolve the ambiguity in concept-to-signal or
signal-to-concept mappings that appears on the level of the popula-
tion in different ways. We consider this as an interesting property of
the model since language change, like biological evolution, essentially
thrives on variation in the population.

In this paper, we take a closer look at the specific form of variation
that can persist in a neutrally stable state, and we will show that the
variation sustained by neutral stability is rich enough to account for
the branching of languages. We will consider neutral drift—that is, a
random shift in the relative type frequencies—among the variants
that can coexist in a neutrally stable state, and we will see that this
can be a pathway for mutations that so far have been blocked. But
different directions of neutral drift may open the door to different
mutations, which will eventually lead to different long-run outcomes.
It is in tracing these different evolutionary paths that we will
encounter the phenomenon that the meaning of a signal may shift,
or switch, between two populations that go back to the same
common ancestral population. Formally, the mechanism that we
describe can be seen as a particular case of shifting balance (Wright,
1931) where different fitness peaks can be reached by drift along
(locally stable) ridges of high, but not globally maximal fitness (see,
for example, Gavrilets and Hastings, 1996).

2. The model

There are n concepts that potentially become the object of
communication, and there are m signals (words or morphemes that
encode a grammatical feature) that are available to individual agents.
We assume that by its very nature no signal is any more or less ‘‘fit’’
to represent a particular concept. In other words, signals are of no
differential costs, which we will express formally by assuming that
signals are of no cost at all. In particular, this implies that the cost of a
signal does not depend on the state of the world, so that observation
of a particular signal would not reveal any information about the
state of the world. In this sense, signals are ‘‘arbitrary.’’

We aim at modeling certain aspects of natural language. In
doing so we make a very broad assumption about the cooperative
nature of language: We assume that there is a homogeneous
population, where (i) over their lifetimes, individuals randomly
and repeatedly engage in potential communication over all
possible concepts with everybody else in the population, (ii) the
sender and the receiver benefit from successful communication in
equal terms, and (iii) individuals appear in the role of the sender
or the receiver with equal probabilities.

A (pure) strategy for an individual in the role of the sender is a
mapping from potential objects of communication to available
signals. We represent this by a matrix

P¼

p11 . . . p1j . . . p1m

^ ^

pi1 . . . pij . . . pim

^ ^

pn1 . . . pnj . . . pnm

0
BBBBBB@

1
CCCCCCA

, ð1Þ

where pij is either 0 or 1, and there is exactly one 1 in each row of
P—the interpretation being that if pij¼1, then concept i is mapped
to signal j. That is, if this individual wants to communicate
concept i, he or she will use signal j. Formally,

PAPn�m ¼ fPARn�m
þ : 8i,pij ¼ 1 for some j� jðiÞ

and pij ¼ 0 if ja jðiÞg: ð2Þ

Similarly, a strategy for an individual in the role of the receiver is
a mapping from potentially received signals to objects, which we
represent by a matrix

Q ¼

q11 . . . q1i . . . q1n

^ ^

qj1 . . . qji . . . qjn

^ ^

qm1 . . . qmi . . . qmn

0
BBBBBB@

1
CCCCCCA

, ð3Þ

where qji is either 0 or 1, and there is exactly one 1 in every row of
Q—the interpretation being that if qji¼1, then signal j is mapped
to concept i. That is, if this individual receives signal j, then he or
she will link it mentally to concept i. Formally,

Q AQm�n ¼ fQ ARm�n
þ : 8j, qji ¼ 1 for some i� iðjÞ

and qji ¼ 0 if ia iðjÞg: ð4Þ

For given m and n, there are mn P-matrices and nm Q-matrices.
Note that the restrictions on P and Q do not preclude that, in the
role of the sender, there can be a signal that is used for more than
one concept, or in the role of the receiver, a concept that is
associated with more than one signal: there can be more than one
1 in a column of P, or respectively Q.

If a sender who uses strategy P interacts with a receiver who
uses strategy Q, then a specific concept, say i%, will be correctly
communicated between these two if there is a signal j% such that
pi% j% ¼ 1¼ qj% i% . We take the sum of all correctly communicated
concepts between a sender P and a receiver Q as a measure for the
communicative potential between P and Q (we adopt this termi-
nology from Hurford (1989)). In the notation that we use here, the
communicative potential between P and Q can be written as

pðP,Q Þ ¼
Xn

i ¼ 1

Xm

j ¼ 1

pijqji ¼ trðPQ Þ: ð5Þ

Fig. 1 provides a graphical representation of the calculation of
this function.

p11 ··· p1j ··· p1m
...

...
pi1 ··· pij ··· pim
...

...
pn1 ··· pnj ··· pnm

s1 ··· sj ··· sm

↑
c1 →

...
ci →

...
cn →

q11 ··· q1i ··· q1n
...

...
qj1 ··· qji ··· qjn
...

...
qm1 ··· qmi ··· qmn

c1 ··· ci ··· cn

s1 →
...

sj →
...

sm →

� (P, Q) = p11q11 + ··· + p1jqj1 + ··· + p1mqm1

...

+ pi1q1i + ··· + pijqji + ··· + pimqmi

...

+ pn1q1n + ··· + pnjqjn + ··· + pnmqmn

=
n
∑

i = 1

m
∑
j = 1

pijqji = tr (PQ)

↑ ↑ ↑ ↑ ↑

Fig. 1. Sender matrix P and receiver matrix Q (ci stands for concept i, sj for signal

j, etc.), and the communicative potential pðP,Q Þ.

C. Pawlowitsch et al. / Journal of Theoretical Biology 287 (2011) 1–12 3
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We identify the communicative potential with the payoff that
both the sender and the receiver get out of their interaction. The
payoff functions p1ðP,Q Þ ¼ pðP,Q Þ and p2ðP,Q Þ ¼ pðP,Q Þ together
with the strategy sets Pn�m and Qm�n define an asymmetric game
(with common interests).

We look at the symmetrization of this game, where an
individual adopts the role of a sender or of a receiver with equal
probabilities. A strategy for an individual then is a pair of a sender
and a receiver matrix ðP,Q ÞAPn�m �Qm�n, and the payoff of
strategy ðPk,QkÞ from interaction with ðPl,QlÞ is given by

f ½ðPk,QkÞ,ðPl,QlÞ� ¼
1
2½pðPk,QlÞþpðPl,QkÞ�: ð6Þ

Note that for fixed n and m, there are N¼mn � nm such ‘‘pure
strategies.’’ Note also that f ½ðPk,QkÞ,ðPl,QlÞ� ¼ f ½ðPl,QlÞ,ðPk,QkÞ�, that
is, the payoff function is symmetric; in other words, the payoff
that ðPk,QkÞ gets out of interaction with ðPl,QlÞ is the same as the
payoff that ðPl,QlÞ gets out of interaction with ðPk,QkÞ. Symmetric
games with a symmetric payoff function are sometimes called
doubly symmetric games. In our case, this property is, of course, a
consequence of the identity of payoffs in the underlying asym-
metric game and the symmetry of weights for the two roles (for
more on symmetrized asymmetric games, in particular on their
dynamic properties, see, Cressman, 2003).

2.1. The classical case of an infinitely large population

We take the symmetrized game in pure strategies as the base
game of a population game that is played in an infinitely large
population (the basic model in evolutionary game theory; see,
for example, Hofbauer and Sigmund, 1998; Weibull, 1995;
or Cressman, 2003). With every strategy ðP,Q ÞAPn�m �Qm�n we
identify a particular type of player and we represent a state of the

population by a vector

x¼ ðx1, . . . ,xl, . . . ,xNÞ,
XN

l ¼ 1

xl ¼ 1, ð7Þ

where xl is the relative frequency of type ðPl,QlÞ. To every vector of
type frequencies x we can assign the population’s average
strategy ðPx,QxÞ, where Px ¼

P
lxlPl is the population’s average

sender matrix, and Qx ¼
P

lxlQl the population’s average receiver
matrix. Px will then be a row-stochastic matrix of dimensions
n�m, that is,

PxAMn�m ¼ MARn�m
þ :

X
j

mij ¼ 1, 8 i:

8<
:

9=
;, ð8Þ

and Qx a row-stochastic matrix of dimensions m�n,

QxAMm�n ¼ MARm�n
þ :

X
i

mji ¼ 1, 8 j:

( )
: ð9Þ

Note thatMn�m is indeed spanned by Pn�m, that is, every element
inMn�m can be represented by a convex combination of elements
in Pn�m (possibly not unique); and Mm�n is spanned by Qm�n.2

The fitness of type l is the average payoff that a type l individual
gets from interaction with all other types present in the popula-
tion proportional to their type frequencies, flðxÞ ¼

P
kxkf ½ðPl,QlÞ,

ðPk,QkÞ�: This can be written as the payoff of type l from play

against the population’s average strategy:

flðxÞ ¼ f ½ðPl,QlÞ,ðPx,QxÞ� ¼
1
2½pðPl,QxÞþpðPx,QlÞ�: ð10Þ

The average fitness in the population, f ¼
P

lxlflðxÞ, can be written
as the payoff of the population’s average strategy from play
against itself:

f ðxÞ ¼ f ½ðPx,QxÞ,ðPx,QxÞ� ¼ pðPx,QxÞ: ð11Þ

We call pðPx,QxÞ the eigen communicative potential of a ‘‘language’’
ðPx,QxÞ.

Example 1. Let n¼m¼3 and suppose that there are only two
types present in the population,

ðP1,Q1Þ ¼

1 0 0

0 1 0

0 0 1

0
B@

1
CA,

1 0 0

0 1 0

0 0 1

0
B@

1
CA

2
64

3
75

and

ðP2,Q2Þ ¼

0 1 0

1 0 0

0 0 1

0
B@

1
CA,

0 1 0

1 0 0

0 0 1

0
B@

1
CA

2
64

3
75,

and let the corresponding type frequencies be x1¼0.75 and
x2¼0.25. Then the population’s average strategy is

ðPx,QxÞ ¼

0:75 0:25 0

0:25 0:75 0

0 0 1

0
B@

1
CA,

0:75 0:25 0

0:25 0:75 0

0 0 1

0
B@

1
CA

2
64

3
75:

The fitness of type 1 is f1ðxÞ ¼ 2:5, and the fitness of type 2 is
f2ðxÞ ¼ 1:5. The fitness of a type clearly depends on the relative
frequencies of all types. Consider a different vector of type
frequencies, for example, x0, where x01 ¼ 0:5 and x02 ¼ 0:5. Then
the population’s average strategy is

ðPx0 ,Qx0 Þ ¼

0:5 0:5 0

0:5 0:5 0

0 0 1

0
B@

1
CA,

0:5 0:5 0

0:5 0:5 0

0 0 1

0
B@

1
CA

2
64

3
75;

f1ðx
0Þ ¼ 2, and the fitness of type 2, f2ðx

0Þ, is equally 2.

The infinite-population scenario is conceptually intimately
linked to the replicator dynamics, a simple feedback process where
the frequency of a type grows proportionally to its fitness
difference relative to the average fitness in the population
(Taylor and Jonker, 1978. In our model,

_xl ¼ xl½f ½ðPl,QlÞ,ðPx,QxÞ��f ½ðPx,QxÞ,ðPx,QxÞ��: ð12Þ

Usually this dynamics is interpreted in terms of biological evolu-
tion, but it can also be interpreted in terms of cultural evolution
or learning—for example, it can be derived from a process where
individuals imitate strategies that do better than their current
strategy (Schlag, 1998; see also Traulsen et al., 2005; Sandholm,
2011). A rest point of the replicator dynamics is a state where all
resident types attain the same fitness. Such a state is called a
population equilibrium. In the Example 1 above, the state where
x01 ¼ 0:5 and x02 ¼ 0:5 is a population equilibrium.

2.2. Evolutionary stability

A characteristic of the present model is that it has many
equilibria; in fact infinitely many. However, not all of these satisfy

2 In the papers by Nowak et al. the game is defined right away on Mn�m �

Mm�n as the strategy space. Here we build the game explicitly from a model with

a finite number of types, in order to have a proper framework for defining the

standard replicator dynamics on this game and connecting the evolutionary

stability analysis to the analysis of this dynamics.

C. Pawlowitsch et al. / Journal of Theoretical Biology 287 (2011) 1–124
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the same stability properties. A strategy ðPx,QxÞAMn�m �Mm�n is
an evolutionarily stable strategy (ESS) in the sense of Maynard
Smith and Price (1973) if

(i) f ½ðPx,QxÞ,ðPx,QxÞ�Z f ½ðP,Q Þ,ðPx,QxÞ� for all ðP,Q ÞAMn�m�Mm�n;
and

(ii) whenever (i) holds with equality for some ðP,Q ÞAMn�m �

Mm�n with PaPx or Q aQx, then

f ½ðPx,QxÞ,ðP,Q Þ�4 f ½ðP,Q Þ,ðP,Q Þ�: ð13Þ

The first condition states that ðPx,QxÞ has to be a best response to
itself—the condition for a symmetric Nash equilibrium. The second
condition states that whenever there is an alternative best
response (P, Q) to the original Nash-equilibrium strategy ðPx,QxÞ,
then this alternative best response has to yield a strictly lower
payoff against itself than the original Nash-equilibrium strategy
yields against the alternative best response.

For the game discussed here, these conditions can be simpli-
fied. Condition (i) holds if and only if:

pðPx,QxÞZpðPx,Q Þ, for all PAMn�m ð14aÞ

and

pðPx,QxÞZpðP,QxÞ, for all Q AMm�n: ð14bÞ

That is, Qx has to be a best response to Px, and Px has to be a best
response to Qx.3 The following remark characterizes best
responses in terms of properties of the P and Q matrices.

Remark 1 (Best-response properties of P and Q).

(1) Consider a fixed P AMn�m. Then
(1.a) Q AMm�n is a best response to P in Mm�n (that is, an

argument Q that maximizes pðP ,Q Þ inMm�n) if and only
if for all j,

P
i0qji0 ¼ 1, where i0Aargmaxiðp ijÞ; and

(1.b) maxQ ðpðP ,Q ÞÞ ¼
P

jmaxiðp ijÞ.
(2) Similarly, for fixed Q AMm�n,

(2.a) P AMn�m is a best response to Q in Mn�m (that is, an
argument P that maximizes pðP,Q Þ inMn�m) if and only
if for all i,

P
j0p ij0 ¼ 1, where j0AargmaxjðqjiÞ; and

(2.b) maxPðpðP,Q ÞÞ ¼
P

imaxjðqjiÞ.

(1.a) tells us that a receiver who responds optimally to a given
sender matrix P will infer concept i from signal j if and only if this
is one of the concepts that have maximal probability of being
meant by signal j. (1.b) tells us that for given P AMn�m the
communicative potential pðP ,Q Þ is bounded by the sum of the
column maxima in P . Similarly for (2.a) and (2.b). A more detailed
discussion of these conditions, including a proof, can be found in
Pawlowitsch (2008).

Condition (ii), in (13) above, is equivalent to requiring that if

there is a PAMn�m that is an alternative best response to Qx and a
Q AMm�n that is an alternative best response to Px, with PaPx or
Q aQx, then

pðPx,QxÞ4pðP,Q Þ: ð15Þ

That is, the eigen communicative potential of the original Nash-
equilibrium strategy ðPx,QxÞ has to be higher than the commu-
nicative potential of any pair of alternative best responses.4

Example 1 (Continued). With conditions (14) and (15) at hand,
together with the best-response properties of the P and Q

matrices (Remark 1), it is easy to see that in Example 1 above,
the state ðx01,x02Þ ¼ ð0:5,0:5Þ corresponds to a Nash-equilibrium
strategy, but is not evolutionarily stable: (i) Px0 is a best response
to Qx0 and Qx0 is a best response to Px0 ; (ii), as it should be true for a
Nash equilibrium in mixed strategies, P1 is an alternative best
response to Qx0 and Q1 is an alternative best response to Px0 , but
pðP1,Q1Þ ¼ 3 while pðPx0 ,Qx0 Þ ¼ 2. Similarly, P2 is an alternative best
response to Qx0 and Q2 is an alternative best response to Px0 , but
pðP2,Q2Þ ¼ 3. However, compare this now to the state where the
entire population is of type ðP1,Q1Þ, ðx

00
1,x002Þ ¼ ð1,0Þ, in which case

ðPx00Qx00 Þ ¼ ðP1,Q1Þ. From the best-response properties of the P and
Q matrices we can easily see that Px00 ¼ P1 is not only a, but the
unique best response to Qx00 ¼ Q1, and that Qx00 ¼ Q1 is not only a,
but the unique best response to Px00 ¼ P1. In other words, ðPx00 ,Qx00 Þ is
a strict Nash-equilibrium strategy (there are no alternative best
responses), and hence it is evolutionarily stable. Similarly, P2 is
the unique best response to Q2 and Q2 is the unique best response
to P2, and hence, the state where the entire population is of type
ðP2,Q2Þ will be evolutionarily stable. Note that both ðP1,Q1Þ and
ðP2,Q2Þ establish a bijection between concepts and signals.

Evolutionary stability captures the idea that a state is resistant
against the invasion of mutant strategies. For a variety of selection
dynamics, most importantly the replicator dynamics, this can be
given a precise formulation in terms of dynamic stability properties: If
a strategy ðPx,QxÞ is evolutionarily stable, then the corresponding
state x will be an asymptotically stable rest point of the replicator
dynamics (Taylor and Jonker, 1978).5 That is, if the system starts close
enough to such a rest point, then it will always remain close to it and
will eventually converge to it.

It can be shown that an evolutionarily stable strategy of this
game will exist if and only if m¼n, that is, there is the same
number of signals as there are concepts to be communicated, and
that ðPx,QxÞAMn�n �Mn�n will be an evolutionarily stable strat-
egy if and only if both Px and Qx have the form of a permutation
matrix (a matrix that has exactly one 1 in every row and in every
column) and one matrix is the transpose of the other (Trapa and
Nowak, 2000). That is, an evolutionarily stable strategy can only
be a ‘‘language’’ that bijectively links every concept to exactly one
signal such that the mapping used in the role of the receiver is the
inverse of the mapping used in the role of the sender; in other
words, a language that is unambiguous.6 ðP1,Q1Þ and ðP2,Q2Þ,
which we have seen above in Example 1, are of this form. If such
a strategy is adopted by the entire population, the maximum
communicative potential will be attained.

2.3. The Lyapunov function—fitness landscapes

Due to the symmetry of the payoff function, the replicator
dynamics of this model has a special property: the average fitness
function constitutes a Lyapunov function for the dynamics, that is,

3 This is a general property of symmetrized asymmetric games: Suppose that

there is a Q AMn�m such that pðPx ,Q Þ4pðPx ,QxÞ, and consider the pair ðPx ,Q Þ. Then

f ½ðPx ,Q Þ,ðPx ,QxÞ� ¼
1
2 ½pðPx ,QxÞþpðPx ,Q Þ�4 1

2 ½pðPx ,QxÞþpðPx ,QxÞ� ¼ f ½ðPx ,QxÞ,ðPx ,QxÞ�,

yielding a contradiction to condition (i). Similarly for the roles of P and Q reversed.
4 This comes from the symmetry of the payoff function: f ½ðPx ,QxÞ,ðPx ,QxÞ� ¼

f ½ðP,Q Þ,ðPx,QxÞ� ¼ f ½ðPx ,QxÞ,ðP,Q Þ�4 f ½ðP,Q Þ,ðP,Q Þ�, and hence pðPx,QxÞ4pðP,Q Þ.

5 Note that the converse is not true in general; an example of an asymtotically

stable rest point that is not an evolutionarily stable state can be found in Taylor

and Jonker (1978).
6 Restricting attention to pure strategies, or what in our model corresponds to

states where the entire population is of the same type, this first has been shown by

Wärneryd (1993). In view of Selten’s (1980) general result that for asymmetric

games—and as a consequence also for symmetrized games—evolutionarily stable

strategies can only be strict Nash equilibria, and hence in pure strategies, the two

results are equivalent. From the best-response properties of the P and Q matrices

(Remark 1) it is not difficult to see that for a pair (P,Q) to be a strict Nash

equilibrium strategy (that is, a pair (P,Q) such that P is the unique best responses

to Q and Q the unique best response to P), both P and Q have to be permutation

matrices and one has to be the transpose of the other. The result then is

immediate.
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a function that is increasing along every trajectory.7 In other
words, the dynamical system satisfies Fisher’s fundamental the-
orem of natural selection (Fisher, 1930)—the average fitness
increases along every evolutionary path.8 This can be represented
by a fitness landscape, where evolution is represented by moving
along its uphill directions. The strict local maximum points of the
Lyapunov function coincide with the evolutionarily stable states,
and as a consequence, the evolutionarily stable states coincide

with the asymptotically stable rest points of the replicator
dynamics (Hofbauer and Sigmund, 1988, 1998).

2.4. Monomorphic ESS—no language change

An important aspect of the results above is that an evolutio-
narily stable state, and fitness peak, can only be attained in a
monomorphic population state where a language that bijectively
links every concept to exactly one signal has become fixed in the
population. But languages, like biological organisms, change on
the basis of existing or newly occurring variation. Once evolution
has settled down to such an evolutionarily stable state—with all
variation having been driven out and resistance to any possible
mutant strategy—all descendant populations will be of exactly
the same type with the same (P,Q) being fixed throughout. And,
importantly, this will be the case even if populations get isolated

and evolve separately: for, no matter how we draw subgroups of
the original population, since there is no variation, the same (P,Q)
will resurface in all descendant populations, and this identically
inherited (P,Q) will be a form that is resistant against any possible
mutant. Hence, the same perfectly bijective (P,Q) will be fixed in
all descendant populations, and there will be no change in the
meaning of signals. However—and this is the first step in our
argument—the replicator dynamics does not necessarily converge
to an evolutionarily stable state.

3. Neutral stability—stable polymorphisms

There are equilibrium states in this model that are not
evolutionarily stable but that satisfy a weaker condition known
as neutral stability (Maynard Smith, 1982) or weak evolutionary

stability (Thomas, 1985) and that do allow for variation in the
population. Formally, a strategy ðPx,QxÞAMn�m �Mm�n is neu-

trally stable if

(i) f ½ðPx,QxÞ,ðPx,QxÞ�Z f ½ðP,Q Þ,ðPx,QxÞ� 8 ðP,Q ÞAMn�m �Mm�n; and
(ii) whenever (i) holds with equality for some ðP,Q ÞAMn�m�

Mm�n, then

f ½ðPx,QxÞ,ðP,Q Þ�Z f ½ðP,Q Þ,ðP,Q Þ�: ð16Þ

This condition is similar to the notion of evolutionary stability
(13), only that the strict inequality in the second condition is
replaced by a weak inequality. We have already seen above in
(14) that the first condition simplifies to requiring that Px and Qx

be best responses to each another. By the symmetry of the payoff
function, the second condition simplifies analogously to what we

have seen in (15): If there is a PAMn�m that is a best response to
Qx and a Q AMm�n that is a best response to Px, then it should be
true that

pðPx,QxÞZpðP,Q Þ: ð17Þ

Note that a state that is evolutionarily stable will also be neutrally
stable. We call a state that is neutrally stable but not evolutiona-
rily stable, properly neutrally stable. Example 2 discusses a typical
properly neutrally stable state.

Example 2. Suppose there are four resident types who all have
the same sender matrix P0, but different receiver matrices:

ðP0,Q1Þ ¼

1 0 0

1 0 0

0 0 1

0
B@

1
CA,

1 0 0

0 1 0

0 0 1

0
B@

1
CA

2
64

3
75,

ðP0,Q2Þ ¼

1 0 0

1 0 0

0 0 1

0
B@

1
CA,

0 1 0

1 0 0

0 0 1

0
B@

1
CA

2
64

3
75,

ðP0,Q3Þ ¼

1 0 0

1 0 0

0 0 1

0
B@

1
CA,

1 0 0

0 0 1

0 0 1

0
B@

1
CA

2
64

3
75,

ðP0,Q4Þ ¼

1 0 0

1 0 0

0 0 1

0
B@

1
CA,

0 1 0

0 0 1

0 0 1

0
B@

1
CA

2
64

3
75,

and let the corresponding type frequencies be ðx1,x2,x3,x4Þ ¼

ð0:3,0:3,0:2,0:2Þ. Then the population’s average strategy is

ðPx,QxÞ ¼

1 0 0

1 0 0

0 0 1

0
B@

1
CA,

0:5 0:5 0

0:3 0:3 0:4

0 0 1

0
B@

1
CA

2
64

3
75:

With the help of the characterization of best responses (Remark
1), it is straightforward to check that Px¼P0 is a best response to
Qx, and that Qx is a best response to Px (in order to have an
immediate glance at the column maxima, we have highlighted
them in boldface). In fact, Px¼P0 is not only a best response, but
the unique best response to Qx. Hence, for any pair of alternative
best responses ðP0,Q 0ÞAMn�m �Mm�n to ðPx,QxÞ we will have that
P0 ¼ Px. And this is in fact sufficient to see that ðPx,QxÞ is neutrally
stable, since for any Q AMm�n (irrespective of whether it will be a
best response to Px or not) we will have

pðPx,Q Þr2¼ pðPx,QxÞ:

Hence, the communicative potential of any pair of alternative best
responses to the original Nash equilibrium strategy pðP0,Q 0Þ ¼
pðPx,Q 0Þ will always be bounded by the eigen communicative
potential of the original Nash-equilibrium strategy pðPx,QxÞ. Note
in particular that ðPx,QxÞ cannot be invaded by a mutant who
switches to

ðP1,Q1Þ ¼

1 0 0

0 1 0

0 0 1

0
B@

1
CA,

1 0 0

0 1 0

0 0 1

0
B@

1
CA

2
64

3
75

or

ðP2,Q2Þ ¼

0 1 0

1 0 0

0 0 1

0
B@

1
CA,

0 1 0

1 0 0

0 0 1

0
B@

1
CA

2
64

3
75:

However, while ðPx,QxÞ is neutrally stable, it fails to be evolu-

tionarily stable, since there are alternative best responses

Q 0AMm�n to Px such that pðPx,Q 0Þ ¼ pðPx,QxÞ. Of course, every

7 In fact, for this game—and doubly symmetric games in general—the average

fitness is not only a Lyapunov function, but a potential function and the replicator

dynamics constitutes a gradient system with respect to the Shashahani metric; for

more on this see Hofbauer and Sigmund (1998) and Huttegger (2007).
8 This is a rather special property for a model of frequency-dependent

selection. For a number of games that prominently have been studied in an

evolutionary context this is not true, and there are even games, for example, the

Prisoner’s Dilemma, where the average fitness decreases along any evolutionary

path.
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pure strategy Ql, l¼1,2,3,4, that is in the support of Qx is already a

best response to Px, but, more generally, every Q 0AMm�n that is

of the form

Q 0 ¼

q11 q12 0

q21 q22 q23

0 0 1

0
B@

1
CA,

will be a best response to Px, and for any such Q 0 we will have

pðPx,Q 0Þ ¼ 2¼ pðPx,QxÞ.

While evolutionary stability translates the idea that a strategy
can protect itself against the invasion of mutant strategies—in the
strict sense that it can drive out mutant strategies—neutral
stability is more apt to capture the idea that the currently
resident types cannot be driven out by other, potentially intruding,
strategies. Instead, there can be coexistence of types. Again, for the
replicator dynamics this can be given a precise formulation in
terms of dynamic stability properties: If a strategy ðPx,QxÞ is
neutrally stable, then the corresponding state x will be a Lyapunov

stable rest point of the replicator dynamics (Bomze and Weibull,
1995). That is, if the system starts close enough to such a rest
point, then it will always remain close to it, but need not converge
to it. For doubly symmetric games, the converse is true as well
(Bomze, 2002), and hence for the game discussed here, a state is
neutrally stable if and only if it is Lyapunov stable in the
replicator dynamics. And, again, this comes from the fact that
the average fitness is a Lyapunov function for the dynamics: the
local maxima of this function coincide with the neutrally stable
states.

3.1. Patterns in the P and Q matrices

It can be shown that a Nash-equilibrium strategy ðPx,QxÞAMn

�m�Mm�n is neutrally stable if and only if the following condi-
tion holds:

(i) at least one of the matrices Px or Qx (or both) has no zero
column, and

(ii) none of the two matrices, neither Px nor Qx, has a column with
multiple maximal elements that are strictly between 0 and 1
(Pawlowitsch, 2008).

Necessity of these conditions is quite intuitive: (i) a zero column in
P means that there is a signal that is never used, and a zero column in
Q means that there is a concept that is never possibly inferred. It is
straightforward to show then that a mutant who links this empty
signal to this unknown concept can do as well against the population
but can do better against itself. (ii) By the use of the best-response
properties of the P and Q matrices, it is easy to show that if, in
equilibrium, there is one column with multiple maximal elements
strictly between 0 and 1, then there will always be another column
with multiple maximal elements strictly between 0 and 1. In terms of
the language model this means that there are two (or more) signals
that are simultaneously linked to two (or more) concepts. It is
straightforward to show then that a mutant who resolves this
ambiguity by linking one of these concepts bijectively to one of these
signals, and the other concept to the other signal, can do as well
against the population as all the resident types but can do strictly
better against itself. Example 1 illustrates this case. Sufficiency follows
from a generalization of the argument that we have seen in Example
2. A complete proof can be found in Pawlowitsch (2008).

A couple of observations follow:

(a) A monomorphic population can never be properly neutrally

stable: From the best-response properties of the P and Q

matrices it is easy to see that in a monomorphic Nash-
equilibrium state there will be necessarily a zero column in
both P and Q. By condition (i), then, (P,Q) cannot not be
neutrally stable.

(b) A population state at the interior of the state space can never be

neutrally stable: This follows from condition (ii): In a popula-
tion state at the interior of the state space, the population’s
average Px, and respectively Qx, will always be of the form that
each element is strictly between 0 and 1. Best-response
properties of the P and Q matrices then imply that the
elements in each column of Px, and respectively Qx, have to
be identical, and hence there will be multiple maximal
column elements strictly between 0 and 1.

(c) Minimal consistency: The characterization of neutrally stable
strategies above can be interpreted in the sense of some
minimal consistency criteria between the sender and the
receiver matrix. Condition (i) has a straightforward interpre-
tation: it tells us that there can be no signal that remains idle
(a zero column in Px) as long as there is a concept that is never
possibly inferred (a zero column in Qx). Condition (ii),
together with the best-response properties of the Px and Qx

matrices (Remark 1), implies the following: There can be
different resident types who use different signals to commu-
nicate a particular concept (multiple entries between 0 and
1 in a row of Px), but if this is the case, then all resident types

will infer this particular concept from any of the signals
that some resident type uses to communicate this concept
(a column with multiple 1 s in Qx), or this concept is never
inferred by any resident type (a zero column in Qx). And,
similarly for the roles of Px and Qx reversed: there can be
different resident types who infer different concepts from the
same signal (multiple entries between 0 and 1 in a row of Qx;
in Example 2, the first and the second row of Qx), but if this is
the case, then all resident types will use this particular signal
to communicate all the concepts that some resident type
infers from this signal (a column with multiple 1 s in Px; in
Example 2, the first column in Px), or this signal is never used
by any resident type (a zero column in Px; in Example 2, the
second column of Px).

(d) Stabilizing variation and uninvadability by perfectly bijective

strategies: While a monomorphic population that is not
evolutionarily stable can always be invaded by another
strategy, it is the very coexistence of types that stabilizes
multiplicities in concept-to-signal (or signal-to-concept)
mappings in a neutrally stable state. Example 2 illustrates
this property.

Example 2 (Continued). Since there are some types who, in the
role of the receiver, will map signal 1 to concept 1 and some types
who will map signal 1 to concept 2 (and these concepts are no
more likely to be inferred by any other signal), the unique optimal
response to this aggregate receiver behavior, in the role of the
sender, is to link both concept 1 and concept 2 to signal 1. In a
Nash equilibrium all resident types will do so, as reflected in the
two 1’s in the first column of the population’s sender matrix
Px¼P0, but it is only this property of the population’s sender
matrix that enables variation in the role of the receiver. Though
variation in Q is not imposed by Nash-equilibrium conditions (for
Qx to be a best response to Px, it is not necessary that both q11 and
q12 are strictly positive), once it is there (once q11 and q12 have
taken values strictly between 0 and 1), any best response to Qx

will have to set both p11 and p21 equal to 1, thereby freezing the
multiplicity in the population’s average sender matrix and block-
ing off mutations who try to resolve the existing ambiguity by
linking each concept to exactly one signal. As we have seen above,
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ðPx,QxÞ cannot be invaded by any of the perfectly bijective
strategies ðP1,Q1Þ or ðP2,Q2Þ. In Appendix A we discuss this
phenomenon in the context of the so-called ‘‘bidirectional Saus-
surean sign.’’

3.2. Convergence to neutrally stable states

An important consequence of the average fitness being a
Lyapunov function for the dynamics is that every trajectory will
converge to a rest point (Akin and Hofbauer, 1982). For the game
discussed here it can be shown that for every properly neutrally
stable state there is a neighborhood in which every rest point of
the dynamics is a neutrally stable state (Pawlowitsch, 2008).
From this, together with the fact that neutrally stable states are
Lyapunov stable, one can see that there are in fact components of
properly neutrally stable strategies that have a basin of attraction
of non-zero measure. More precisely, properly neutrally stable
states occur in connected (but not closed) sets of Nash equilibria
at the boundary of the state space. Of course, the replicator
dynamics can converge to an evolutionarily stable state, but it
will not do so ‘‘almost always’’ (Huttegger, 2007; Pawlowitsch,
2008). Figs. 2 and 3 illustrate this for a truncation of the game.

In a neutrally stable state the forces of selection and mutation
exert no further pressure on the coexistence of types: selection
has come to an end since all resident types get the same payoff,
and it is the very coexistence of these types that protects

the population from being taken over by mutants ‘‘from outside.’’
However, as we shall see in the next section, this form of
neutrally stable coexistence of types can be destabilized by a
redistribution of the relative frequencies of the types who are
present in such a state.

(P0, Q4)

R

(P0, Q3)

(P1, Q1)

Fig. 2. The phase portrait of the replicator dynamics when the population

consists only of the three types ðP1 ,Q1Þ, ðP0 ,Q3Þ, and ðP0 ,Q4Þ mentioned in

Example 2. The light purple stationary point R¼ 1=4ðP1 ,Q1Þþ3=4ðP0 ,Q4Þ is

unstable and, in fact, it corresponds to the global minimum of the average

population fitness f ðxÞ with respect to these three types; the dashed gray

contours represent the level sets of f , which, for this model, is a Lyapunov

function for the dynamics—it is increasing along every trajectory. Moreover, we

see that the line which joins R to the semi-stable type ðP0 ,Q3Þ (light blue) is

actually a separatrix of the system: it is invariant under the replicator dynamics

and separates the state space into two regions that are themselves invariant as

well. Every point on the face spanned by ðP0 ,Q3Þ and ðP0 ,Q4Þ, except for the vertex

ðP0 ,Q3Þ, is neutrally stable. Hence, even though the type ðP1 ,Q1Þ corresponds to

the global maximum of the average population fitness f , we see that there is a

positive measure of initial conditions which do not converge to it. (Note that

ðP0 ,Q4Þ is neutrally stable for the truncation of the game to the subset of

strategies considered here, but is not neutrally stable in the complete strategy

space P3�3 �Q3�3; it can be invaded by ðP2 ,Q2Þ, see also Fig. 5.) (For interpreta-

tion of the references to color in this figure legend, the reader is referred to the

web version of this article.)

(P1, Q1)

R

R

(P0, Q4) (P0, Q3)

(P1, Q1) (P0, Q1) (P1, Q1)

(P1, Q1)

(P0, Q4)

(P0, Q1)

(P0, Q3)

Fig. 3. (a) A 2-dimensional foldout of the faces of the phase portrait of the

replicator dynamics when the 3-type population of Fig. 2 is augmented by the

fourth type ðP0 ,Q1Þ. Since the types containing P0 all yield the same payoff when

paired against each other, the corresponding face (center) consists entirely of

fixed points; however, not all of them are neutrally stable. The light blue triangle

shows the set of neutrally stable states. This set is convex, but not closed; it is

open all along the boundary that connects the vertex ðP0 ,Q3Þ to the midpoint on

the face ðP0 ,Q4Þ – ðP0 ,Q1Þ. (The vertex ðP0 ,Q4Þ is neutrally stable for the truncation

of the game considered here, but is not neutrally stable in the complete strategy

space P3�3 �Q3�3; it can be invaded by ðP2 ,Q2Þ.) The light purple lines represent

separatrices of the system and show that the type ðP1 ,Q1Þ, which maximizes

population fitness, is not globally attracting. In (b) we present the full 3-dimen-

sional phase portrait of the replicator dynamics for this subset of strategies. The

separatrices that we can see in (a) delineate the boundary of a higher-dimen-

sional separatrix (semi-transparent plane) that breaks up the state space in two

distinct invariant sets. Both sets have positive measure. So, even though the type

ðP1 ,Q1Þ is evolutionarily stable, there is a positive measure of initial conditions

which do not converge to it, but which, instead, converge to neutrally stable

states in the face spanned by the other three types. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version

of this article.)
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4. A third evolutionary force: neutral drift

Evolutionary and neutral stability, or more precisely their
dynamic counterparts in the form of asymptotic stability and
Lyapunov stability, test locally around an equilibrium against
small perturbations in the state of the population. These concepts
do not test against a scenario where a larger fraction of the
population simultaneously switches to a new strategy, or where a
major shift in the relative type frequencies of the types already
present in the population occurs. The first type of change is in
fact hard to argue in an evolutionary setting, or a setting where
individual strategies are updated in a decentralized way. The
second type of change, however, a redistribution of the types
already present in the population, does not seem artificial for a
scenario of language change. Such a shift can be brought about by
a pronounced reduction in population size, so-called bottlenecks,
or it can be the result of a subset of the population migrating
to a different neighborhood. Archeological, genetic, and linguistic
evidence suggests that such events have dramatically shaped
human evolution and the geographic distribution of langua-
ges (see, for example, Cavalli-Sforza, 1997; Cavalli-Sforza and
Feldman, 1981).

4.1. Neutral drift as a pathway for a mutation for bidirectionality

If the population has reached a state where all agents are of
the same type, in whichever way we draw subsets of the original
population, all descendant populations will be of exactly the same
type. However, if the population is composed of different types,
we cannot expect that the type frequencies in the descendant
population will be an exact image of the ancestral population.

Suppose that we are in a neutrally stable state as we have seen
it in Example 2 with the type frequencies given by ðx1,x2,x3,x4Þ ¼

ð0:3,0:3,0:2,0:2Þ so that

ðPx,QxÞ ¼

1 0 0

1 0 0

0 0 1

0
B@

1
CA,

0:5 0:5 0

0:3 0:3 0:4

0 0 1

0
B@

1
CA

2
64

3
75,

but that now there is an exogenous random event that brings
about a shift in the relative frequencies of the resident types such
that after this shift, for example, ðx01,x02,x03,x04Þ ¼ ð0:375,0:125,
0:25,0:25Þ. The average sender–receiver pair then is

ðPx0 ,Qx0 Þ ¼

1 0 0

1 0 0

0 0 1

0
B@

1
CA,

0:625 0:375 0

0:125 0:375 0:5

0 0 1

0
B@

1
CA

2
64

3
75:

Now, Px0 and Qx0 are still best responses to each other, and hence
ðPx0 ,Qx0 Þ still is a Nash-equilibrium strategy. But, as we can readily
see from the multiple maximal elements in the second column of
Qx0 , it is no longer neutrally stable. If a small fraction of the
population now switches to ðP1,Q1Þ—as it could come about, for
example, by a mutation for bidirectionality, as we discuss it in
Appendix A, that appears on type 1 (a mutation that was blocked
before)—then this mutant strategy will do as well against ðPx0 ,Qx0 Þ

as any of the resident types, but will do strictly better against
itself, and hence under a monotonic selection dynamics will
eventually become fixed in the population. If—all else being
equal—an even more pronounced reduction of type 2 comes
about, then the resulting population state will still be a rest point
of the replicator dynamics (since all resident types gain the same
payoff against each other), but it will no longer be a Nash
equilibrium. ðP1,Q1Þ will then be a better response to ðPx0 ,Qx0 Þ than
ðPx0 ,Qx0 Þ is to itself, and hence a mutant who switches to ðP1,Q1Þ

will be immediately on its way to fixation.

A similar scenario will obtain if type 4 goes extinct, bringing
about a shift in the relative type frequencies to ðx001,x002,x003,x004Þ ¼
ð0:375,0:375,0:25,0Þ. In this case,

ðPx00 ,Qx00 Þ ¼

1 0 0

1 0 0

0 0 1

0
B@

1
CA,

0:625 0:375 0

0:375 0:375 0:5

0 0 1

0
B@

1
CA

2
64

3
75:

A mutation to ðP1,Q1Þ will now also be able to invade, and will
finally take over the population.

4.2. Different histories of change

A different outcome, however, obtains if a shift in the relative
frequency of the resident types to the detriment of types 1 or
3 occurs. Consider, for example a shift that results in ðx0001 ,x0002 ,x0003 ,x0004 Þ ¼
ð0:125,0:375,0:25,0:25Þ. Then,

ðPx000 ,Qx000 � ¼

1 0 0

1 0 0

0 0 1

0
B@

1
CA,

0:375 0:625 0

0:375 0:125 0:5

0 0 1

0
B@

1
CA

2
64

3
75:

This produces also a change in the column maxima of Qx, but this
time in a different column. If a small fraction of mutants now
switches to ðP2,Q2Þ—for example a mutation for bidirectionality that
appears on type 2 —then this mutant strategy will do as well
against ðPx,QxÞ as all the resident types, but will do strictly better
against itself and hence will finally take over the population. The
same mutation will be enabled if type 3 goes extinct. So, depending
on the direction of drift between selectively neutral variants, the
same ancestral population can give rise to two different, perfectly
bidirectional, languages. Fig. 4 illustrates these different evolution-
ary outcomes. Fig. 5 provides a graphical representation of this
phenomenon for the case that the ancestral population consists of
the two types ðP0,Q3Þ and ðP0,Q4Þ only: The face connecting ðP0,Q3Þ

and ðP0,Q4Þ is a ridge of selectively neutral variants. As long as both
ðP0,Q3Þ and ðP0,Q4Þ are present in the population, the population is
in a neutrally stable state. In this case, the population’s average
sender–receiver pair ðPx,QxÞ is of the form:

1 0 0

1 0 0

0 0 1

0
B@

1
CA,

x3 x4 0

0 0 1

0 0 1

0
B@

1
CA

2
64

3
75,

and neither ðP1,Q1Þ nor ðP2,Q2Þ can invade. But if ðP0,Q4Þ goes
extinct—which means that the population drifts to the boundary
of this ridge of selectively neutral variants—the population can be
invaded by ðP1,Q1Þ, and from thereon selection will take it towards
the point where everybody will be of type ðP1,Q1Þ. If, on the other
hand, ðP0,Q3Þ goes extinct, the population will drift to the opposite
boundary of this neutral ridge, and will finally be invaded by ðP2,Q2Þ.
Note that along any of these possible paths, the average fitness stays
constant or is increasing, but is never decreasing.

4.3. Shifting balance

The mechanism that we describe can be seen as a form of
shifting balance (Wright, 1931) where for different species (here
‘‘languages’’) represented by fitness peaks to be reached, popula-
tions do not have to cross fitness valleys, but where different
species (‘‘languages’’) can form by drift along ridges of high,
locally maximal, fitness. Drift along ridges of selectively neutral
variants naturally comes about if populations are subject to
exogenous random shocks like bottlenecks or migration leading
to the founders’ effect (Mayr, 1963). Gavrilets and Hastings
(1996) have analyzed scenarios of shifting balance-founder effect
speciation in a classical population-genetics model. In economics,
Binmore and Samuelson (1999) have studied the role of drift
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along ridges of neutral evolution in its relation to classical game
theoretic—strategic—approaches to equilibrium selection. Impor-
tantly, the shape of the fitness landscape that gives rise to this
phenomenon is not an ad hoc assumption,9 but comes about as an
endogenous feature of the model—in our case the underlying

language game. The proposed mechanism is in line with empirical
findings which support a serial founder effect model of language
expansion (for a recent contribution focusing on a phonological
trait see, Atkinson, 2011).

5. Conclusions

In linguistics the question whether all human languages can be
traced back to one unique common ancestor remains the subject
of a heated debate (see, for example, Evans and Levinson, 2009).
A standard argument in evolutionary accounts for the diversifica-
tion of language is that it serves as an in-group marker to enhance
cooperation in small groups (see, for example, Dunbar, 1998).
From a conceptual point of view, postulating a function of
language differentiation for enhancing in-group cooperation
(which will result in increased material payoffs) amounts to
postulating a preference for diversification in the language game,
that is, making it an assumption of the model, and therefore, in our
mind, cannot be considered something explained by the model.

Another mechanism for language diversification that is some-
times proposed is adaptation to different environments. In the
context of a game-theoretic model this is to assume different
payoff functions in different environments, which, conceptually,
also boils down to writing part of what has to be explained into
the payoff function.

The argument that we give here shows that language diversi-
fication can come about in a perfectly cooperative world (a world
where everybody wants to cooperate with everybody) solely by
the effects of frequency-dependent selection. This does not mean
that language differentiation and diversification cannot have
other sources (for example, adaption to different environments)
or cannot be adapted to serve some function in a co-evolutionary
process (possibly as an in-group marker to enhance cooperation),
but it shows that we do not need these quite specific assumptions to

give an evolutionary account for the differentiation of languages.
Rather it can come about already under weaker assumptions.

In historical linguistics, language change is often described as
two, or more, variant forms coexisting for some time and then one
giving way to another (see, for example, Schendl, 2001). From an

R

R

(P1, Q1)

(P0, Q4) (P0, Q3)

(P1, Q1)(P2, Q2)(P1, Q1)

Fig. 5. A 2-dimensional foldout of the faces of the phase portrait of the replicator

dynamics when the population consists of the four types ðP0 ,Q3Þ,ðP0 ,Q4Þ,ðP1 ,Q1Þ,

and ðP2 ,Q2Þ mentioned in Example 2. The vertices ðP1 ,Q1Þ and ðP2 ,Q2Þ are

evolutionarily stable states. The face connecting ðP0 ,Q3Þ and ðP0 ,Q4Þ is a ridge of

selectively neutral variants. As long as both ðP0 ,Q3Þ and ðP0 ,Q3Þ are present in the

population, the population is in a neutrally stable state, and neither ðP1 ,Q1Þ nor

ðP2 ,Q2Þ can invade. But if ðP0 ,Q4Þ goes extinct, the population can be invaded by

ðP1 ,Q1Þ; and if ðP0 ,Q3Þ goes extinct, the population can be invaded by ðP2 ,Q2Þ.

1 0 0
0 1 0
0 0 1

,
1 0 0
0 1 0
0 0 1

0 1 0
1 0 0
0 0 1

,
0 1 0
1 0 0
0 0 1

Cannot invade

Ancestral Population
(neutrally stable)

Perturbed Population

Neutral
Drift

+ Mutation

Different Descendants

Selection

1 0 0
1 0 0
0 0 1

,
0.5 0.5 0
0.3 0.3 0.4
0 0 1

×

×

1 0 0
1 0 0
0 0 1

,
0.625 0.375 0
0.125 0.375 0.5

0 0 1

1 0 0
1 0 0
0 0 1

,
0.375 0.625 0
0.375 0.325 0.5

0 0 1

. . . . . .

1 0 0
0 1 0
0 0 1

,
1 0 0
0 1 0
0 0 1

0 1 0
1 0 0
0 0 1

,
0 1 0
1 0 0
0 0 1

1 0 0
0 1 0
0 0 1

,
1 0 0
0 1 0
0 0 1

Descendant Population 1

0 1 0
1 0 0
0 0 1

,
0 1 0
1 0 0
0 0 1

Descendant Population 2

Fig. 4. The ancestral population is neutrally stable; in particular, it cannot be invaded by mutants who try to resolve the existing ambiguity by establishing a bijection

between concepts and signals. However, a shift in the relative type frequencies (neutral drift) can overcome neutral stability and open the door for such mutations.

Different directions of neutral drift are pathways for different mutations, which finally lead to the fixation of different languages. As a result we can observe a switch in the

meaning of lexical items in two languages that go back to the same common ancestor.

9 A critique that sometimes has been addressed to Wright’s shifting balance

theory is that the fitness landscapes that he used to illustrate the theory were

drawn in an ad hoc manner.
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evolutionary point of view, this begs the question how variation
in the population is sustained in the first place. The argument that
we give here does not only show why languages can differentiate
and branch on the basis of actual variation, but also why variation
in the population, and the resulting ambiguities, can be a locally
stable phenomenon in the first place even though ex ante there is
no incentive for differentiation, and globally it would always be
the best if everybody used the same language that bijectively
links every concept to exactly one signal.

The suboptimality that we observe in polymorphic Nash
equilibria reflects a problem that has long been known to social
philosophers and philosophers of language and to which game
theorists have given a precise formulation: the problem of being
stuck in a bad equilibrium. We would all be better off if we could
simultaneously jump out of the bad equilibrium, and right into
another, but as long as there is no central institution that makes
us jump simultaneously, we are stuck in the bad equilibrium,
since unilaterally nobody has an incentive to deviate from the old
one, and in fact would lose if he were the only one to deviate.
Language abounds with this type of inefficiencies; the existence
of centralized institutions of language regulation seems to testify
to this fact. Big coordinated jumps are difficult to argue in an
evolutionary setting. What is not difficult to argue in an evolu-
tionary setting is a redistribution of the frequencies of the types
that are already present in the population. This form of drift can
open the door for mutations that can take us out of these
inefficient states—but thereby also opening the door for the
diversification of languages.
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Appendix A. Excursion: evolution of the bidirectional
Saussurean sign?

Linguists call the property that if a concept A is linked to a
signal s, and if s, when received, evokes the image of A, bidir-

ectionality, and a form–meaning pair that satisfies this property,
the bidirectional Saussurean Sign. Most linguistic theories postu-
late such form–meaning pairs as the underlying basic building
blocks of language and the ability to grasp and operate with these
objects as genetically implemented as part of the human language
acquisition device. It is in the search of an evolutionary founda-
tion for bidirectionality that Hurford (1989) has introduced a
version of the model that we investigate here in the linguistics
literature.

Hurford’s approach is to study this model by agent-based
computer simulations and to compare the performance of differ-
ent behavioral types. Specifically he is interested in the question
whether types who align their Q with their P in a bidirectional
way will outperform other behavioral types, where the formal
criterion for bidirectionality that he uses is that the individual’s Q

has to be a best response to the individuals’s P. The two other
behavioral types that he considers are basically agents who adopt
a P that is randomly sampled from the population and a Q that is

independently randomly sampled from the population. For some
specific initial conditions, Hurford can show that bidirectional
types will indeed do better than the two other behavioral types,
but altogether the results that he gets are inconclusive. Hurford’s
(1989) paper—which has been written at a time when evolu-
tionary game theory was very little known outside a small group
of mathematicians and biologists—mentions the work of Maynard
Smith, but neither evokes the term evolutionary game theory, nor
does it include an evolutionary stability analysis. So it is also of
some methodological interest to ask what we can say about the
question of bidirectionality from the point of view of the game-
theoretic analysis of the model that is available to us now.

An immediate answer that we can give on the basis of the
replicator dynamics, if we take as a formal definition of bidir-
ectionality that the P and the Q have to be best responses to each
other, is that replication operating on the (P,Q) pairs can account for
the rise of bidirectionality on the level of the population’s average

strategy ðPx,QxÞ—the ‘‘language’’ of the population—but that it is
not sufficient to guarantee that each individual type who is
present in this population will be perfectly bidirectional with
itself. Example 2 illustrates this: All resident types use a Ql that is
a best response to the fixed sender matrix Px¼P0. But while the
fixed sender matrix P0¼Px is a best response to Qx, it is not a best
response to each individual Ql that is present in the population: it
is a best response to Q3 and Q4, but it is not a best response to Q1

or Q2. That is, types 1 and 2, when they appear in the role of the
sender, do not respond optimally to themselves in the role of the
receiver. Note that what prevents them from doing so—in
equilibrium—is the need to respond optimally to the population’s
average Q. Hence, the aggregate property that in a Nash equili-
brium ðPx,QxÞ, Px and Qx have to be best responses to each other
does not necessarily carry over to the (P,Q) of each individual type
that is present in such a state. From a game-theoretic point of
view this is not surprising; it simply reflects the fact that in a
mixed Nash equilibrium not every pure strategy that is in its
support has to constitute a Nash equilibrium in itself.

What is interesting about Example 2 in the context of bidir-
ectionality as Hurford asks the question—namely whether a
behavioral program for bidirectionality will outperform other
behavioral types—is that there can be states where a mutation
for bidirectionality cannot break through: Suppose we are in a
neutrally stable state as we have seen it above with
ðx1,x2,x3,x4Þ ¼ ð0:3,0:3,0:2,0:2Þ and that there is a mutation that
appears on type 1 that makes this type want to be consistent with
himself and adopt a P that is a best response to his individual Q,
that is, a mutation of ðP0,Q1Þ to ðP1,Q1Þ: Under a monotonic
selection dynamics this mutation has no chance of invading the
population since it will attain a strictly lower payoff against the
current population’s average strategy than any of the resident
types. Likewise, a mutation for bidirectionality that appears on
type 2—a mutation of ðP0,Q2Þ to ðP2,Q2Þ—will also be blocked.
However, as we discuss in Section 4, drift between the selectively
neutral variants that are present in such a state can be a pathway
for a mutation for bidirectionality. Different directions of drift
may enable mutations for bidirectionality on different resident
types and thereby can give rise to different long-run outcomes,
where different proto-languages become fixed in the population.

References

Akin, E., Hofbauer, J., 1982. Recurrence of the unfit. Math. Biosci. 61, 51–62.
Atkinson, Q.D., 2011. Phonemic diversity supports a serial founder effect model of

language expansion from Africa. Science 332, 346–349.
Bomze, I.M., 2002. Regularity vs. degeneracy in dynamics, games, and optimiza-

tion: a unified approach to different aspects. SIAM Rev. 44, 394–414.
Bomze, I.M., Weibull, J.W., 1995. Does neutral stability imply Lyapunov stability?

Games Econ. Behav. 11, 173–192.

C. Pawlowitsch et al. / Journal of Theoretical Biology 287 (2011) 1–12 11



Author's personal copy

Binmore, K., Samuelson, L., 1999. Evolutionary drift and equilibrium selection. Rev.
Econ. Stud. 66, 363–393.

Cavalli-Sforza, L.L., 1997. Genes peoples and languages. Proc. Nat. Acad. Sci. USA
94, 7719–7724.

Cavalli-Sforza, L.L., Feldman, M.W., 1981. Cultural Transmission and Evolution:
A Quantitative Approach. Princeton University Press, Princeton, NJ.

Cressman, R., 2003. Evolutionary Dynamics and Extensive Form Games. MIT Press,
Cambridge, MA.

Donaldson, M.C., Lachmann, M., Bergstrom, C.T., 2007. The evolution of function-
ally referential meaning in a structured world. J. Theor. Biol. 246, 225–233.

Dunbar, R., 1998. Grooming, Gossip, and the Evolution of Language. Harvard
University Press, Cambridge, MA.

Evans, N., Levinson, S.C., 2009. The myth of language universals: Language
diversity and its importance for cognitive science. Behav. Brain Sci. 32,
429–492.

Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Clarendon Press,
London.

Gavrilets, S., 2004. Fitness Landscapes and the Origin of Species. Princeton
University Press, Princeton.

Gavrilets, S., Hastings, A., 1996. Founder effect speciation: a theoretical reassess-
ment. Am. Nat. 147, 466–491.

Hofbauer, J., Huttegger, S., 2008. Feasibility of communication in binary signaling
games. J. Theor. Biol. 254, 843–849.

Hofbauer, J., Sigmund, K., 1988. The Theory of Evolution and Dynamical Systems.
Cambridge University Press, Cambridge, UK.

Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dynamics.
Cambridge University Press, Cambridge, UK.

Hurford, J., 1989. Biological evolution of the Saussurean sign as a component of the
language acquisition device. Lingua 77, 187–222.

Hurford, J., 2003. The language mosaic and its evolution. In: Christiansen, M.H.,
Kirby, S. (Eds.), Language Evolution. Oxford University Press, Oxford, UK.

Huttegger, S., 2007. Evolution and the explanation of meaning. Philos. Sci. 74,
1–27.

Huttegger, S., Zollman, K., 2011. Signaling games: dynamics of evolution and
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