
Further Topics in Statistics and Probabilities

Christina Pawlowitsch

christina.pawlowitsch@u-paris2.fr
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This class

In this class, we will review the fundamental concepts of probability
theory and apply them to problems in mathematical economics.
We will notably discuss models of interactive knowledge and belief
revision as they have been introduced in economics by Robert
Aumann’s article “Agreeing to disagree” (1976).

Evaluation is based on:

• your participation during the sessions,

• written assignments and presentations in class, and

• a final exam.
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Motivation

As individuals participating in society (consumers, investors, voters,
citizens) we are frequently faced with situation in which we have to
attribute probabilities to certain events without being able to
derive those probabilities from a clearly defined underlying
mathematical model, such as the throw of a dice.

Instead, we have to exploit subjective information that we acquire
about the state of the world.

Still we are rational. We want to come up with these subjective
probabilities not in an arbitrary way. Rather we want to exploit in a
coherent and rational way all information available to us.

The Bayesian approach to probabilities offers a model for that.
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What complicates the picture is that we interact with others:
When I observe you acting in a certain way, I might deduce from
that information about the state of the world, which allows me to
update the probabilities that I attribute to certain events.

This is the topic of this class: We will consider individuals who
update their beliefs about certain events in a Bayesian rational
way—using Bayes’ Law—by exploiting the information that is
available to them and that they deduce from observing the actions
of other individuals.

In doing so, we will make use of some of the basic concepts of
probability theory (which you have seen last year in your class
Statistics 2 and which you are currently seeing in Statistics 3).
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Chapter 2

The formal framework and

Aumann’s theorem
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The formal framework (Aumann 1976)

Let (Ω,B, p) be a probability space:

• Ω the set of possible states of the world (a generic element of
which is often denoted by ω ∈ Ω),

• B a σ-algebra on Ω, and
• p the prior probability distribution defined on (Ω,B).

We consider two individuals, 1 and 2, who impute the same prior
probability p to the events in B but who have access to private
information, given by a finite partition Pi of Ω, i ∈ {1, 2}, that is,
a finite set

Pi = {Pi1,Pi2, . . . ,Pik , . . . ,PiKi
}

of nonempty subsets of Ω, the classes (or cells) of the partition,
such that:

(a) each pair (Pik ,Pik ′), k 6= k ′, is disjoint, that is, Pik ∩ Pik ′ = ∅,
and

(b)
⋃

k Pik = Ω.
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The partition Pi models individual i ’s information: when ω ∈ Ω is
the true state, the individual characterized by Pi will learn that
one of the states that belong to the class of the partition Pi to
which belongs ω, denoted by Pi (ω), has materialized.

In order to guarantee that the classes Pik of the partition Pi are
measured by p, we suppose, of course, that they belong to the
σ-algebra B defined on Ω.
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Example

Let Ω = {a, b, c , d , e, f , g , h, i , j , k} and

Pi = {{a, b, g , h}, {c, d , i , j}, {e, f , k}}.

Assume ω? = c , the true state of the world. Then individual i ,
modeled by the partition above, will only receive the information
that the true state of the world is in {c , d , i , j}, that is, that one of
the states in {c , d , i , j} has materialized (but not which one
exactly). In our notation: Pi (c) = {c , d , i , j}.

Methodological reflection: We, in the role of the theorist who
builds the model, know that the true state is ω? = c (hence, we
can write Pi (c)). But the individual in the model only knows that
the true state is one of the states in {c , d , i , j}.
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With this interpretation: if ω is the true state and Pi (ω) ⊂ A, that
is, Pi (ω) implies A, then individual i (at state ω) “knows” that
event A has happened.

In the example above:

Pi = {{a, b, g , h}, {c, d , i , j}, {e, f , k}}.

When ω? = c is the state that has materialized, i will know that
the state that has materialized is in {c , d , i , j}, that is, that the
event {c, d , i , j} has occurred.

As a consequence, i will also know that any event that is a
superset of {c , d , i , j} has occurred. For example, i will also know
that the event {a, c , d , i , j , e} has occurred. And certainly, i will
also know that any event disjoint of {c , d , i , j} did not occur. For
example, i will also know that the event {a, e} did not occur.
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A crucial assumption:

Following Aumann (1976), we assume that the prior p defined on
(Ω,B) as well as the information partitions of the two individuals,
Pi , i ∈ I = {1, 2}, are common knowledge between the two
individuals.

According to David Lewis (1969), an event is common knowledge
between two individuals if not only both know it but also both
know that the other knows it and that both know that the other
knows that they both know it, ad infinitum (Lewis 1969).
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A probabilistic model of “beliefs”

More generally, if individual i is Bayesian rational, then for any
event A that belongs to the σ-algebra defined on Ω, after
realization of the true state of the world, i can calculate the
posterior probability of A given the information provided by the
partition Pi , that is, the conditional probability of A given that
the true state belongs to Pi (ω):

qi = p(A | Pi (ω)) =
p(A ∩ Pi (ω))

p(Pi (ω))
.

Remember: Pi (ω) denotes i ’s information class (or cell or set) to
which belongs ω.
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Example Let Ω = {a, b, c , d , e, f , g , h, i , j , k , l ,m}, endowed with
uniform prior, that is, p(ω) = 1/13 for all possible states, and

P1 = {{a, b, c , d , e, f }, {g , h, i , j , k}, {l}, {m}},
P2 = {{a, b, g , h}, {c , d , i , j}, {e, f , k}, {l ,m}}.

Let A = {a, b, i , j , k} be the event of interest, and suppose ω? = a.
Then:

q1 = P(A | P1(a)) =
p({a, b, i , j , k} ∩ {a, b, c, d , e, f })

p({a, b, c , d , e, f })

=
p({a, b})

p({a, b, c, d , e, f })
=

2
13
6

13

=
1

3

q2 = P(A | P2(a)) =
p({a, b, i , j , k} ∩ {a, b, g , h})

p({a, b, g , h})

=
p({a, b})

p({a, b, g , h})
=

2
13
4

13

=
1

2
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Terminology:

In game theory, decision theory, and economics, the probability
attributed to an event is also called a belief.

In this terminology, p(A) is the prior belief of A, which by
assumption is common knowledge between the two individuals, and
p(A | Pi (ω)) the posterior belief that i attributes to A given the
information received through his or her partition.
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Remember: According to David Lewis (1969), an event is common
knowledge between two individuals if not only both know it but
also both know that the other knows it and that both know that
the other knows that they both know it, ad infinitum (Lewis 1969).

To capture this notion within a set-theoretic framework that relies
on the notion of a state of the world, it turns out to be useful—and
having established this is one of the main achievements of
Aumann—to consider the meet of the two partitions.
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Definition 1 Let P1 and P2 be two partitions of Ω. The meet of
P1 and P2, denoted by P̂ = P1 ∧P2, is the finest common
coarsening of P1 and P2, that is, the finest partition of Ω such
that, for each ω ∈ Ω,

Pi (ω) ⊂ P̂(ω), ∀i ∈ I = {1, 2},

where P̂(ω) = P1 ∧ P2(ω) is the class of the meet to which
belongs ω.

Example

P1 = {{a, b, c , d , e, f }, {g , h, i , j , k}, {l}, {m}},
P2 = {{a, b, g , h}, {c , d , i , j}, {e, f , k}, {l ,m}}.

P̂ = P1 ∧P2 = {{a, b, c , d , e, f , g , h, i , j , k}, {l ,m}}
The meet of the two information partitions, casually speaking,
represents what is common knowledge between the two individuals.
The following Lemma makes this more precise.
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Lemma 1 (Aumann 1976) An event A ⊂ Ω, at state ω, is common
knowledge between individuals 1 and 2 in the sense of the recursive
definition (Lewis 1969) if and only if P̂(ω) ⊂ A, that is: if the
information class of the meet of the two partitions to which
belongs ω is contained in A.
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Definition 2 Let P1 and P2 partitions of Ω. We say that ω′ ∈ Ω
can be reached from another element ω ∈ Ω if there is a sequence
of subsets of Ω, P1,P2, . . . ,Pn, . . . ,PN such that ω ∈ P1 and
ω′ ∈ PN and consecutive Pn, in an alternating manner, belong to
P1 and P2 and intersect with each other.
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Démonstration (Lemma 1, Aumann 1976): At ω, Individual 1
knows that A happend if P1(ω) ⊂ A. Suppose that this is the case
and let P1 = P1(ω). Individual 1 knows that individual 2 knows
that A happend if all P2k with nonempty intersection with P1 are a
subset of A. Two cases: (1) If for all P2k with nonempty
intersection with P1, the intersection with P1 is P2k itself, then P1

contains all ω′ ∈ Ω that can be reached from ω: P1 will be an
element of the meet P1 ∧P2, and all sentences of the form “i
knows that j knows that i knows ... A” are true, that is, A will be
common knowledge. (2) If not, let P2 be a P2k whose nonempty
intersection with P1 is not P2k itself. Individual 1 knows that
individual 2 knows that individual 1 knows A if all P1k with
nonempty intersection with P2 are subsets of A.
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Again two cases: (1) If for all P1k , different from P1, the
intersection with P2 is P1k itself, then P1 ∪ P2 contains all ω′ that
can be reached from ω: P1 ∪ P2 will be an element of the meet
P1 ∧P2, and all sentences of the form “i knows that j knows
that i knows ... A” are true, that is, A will be common knowledge.
(2) If not, let P3 be a P1k ∈P1, different from P1, for which the
intersection with P2 is not P1k itself, and so on. We see that all
sentences of the form “i knows that j knows that i knows ... A”
are true if and only if A contains all ω′ that can be reached from
ω. But the set of all ω′ that can be reached from ω is an element
of the meet P1 ∧P2. QED.
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Remark. Of course, if P is a class of the meet P1 ∧P2, then, the
union of all classes Pik of the partition Pi contained in P is P,⋃

Pik⊂P
Pik = P,

and hence Pi induces a partition of P.

This is easy to verify in the example from above:

P1 = {{a, b, c , d , e, f }, {g , h, i , j , k}, {l}, {m}},
P2 = {{a, b, g , h}, {c , d , i , j}, {e, f , k}, {l ,m}}.

P̂ = P1 ∧P2 = {{a, b, c , d , e, f , g , h, i , j , k}, {l ,m}}
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Posteriors as “events”

Example

Ω = {a, b, c , d , e, f , g , h, i , j , k, l ,m}, with uniform prior,

P1 = {
p(A|{a,b,c,d ,e,f })=1/3︷ ︸︸ ︷
{a, b, c , d , e, f } ,

p(A|{g ,h,i ,j ,k})=3/5︷ ︸︸ ︷
{g , h, i , j , k} ,

p(A|{l})=0︷︸︸︷
{l} ,

p(A|{m})=0︷︸︸︷
{m} },

P2 = { {a, b, g , h}︸ ︷︷ ︸
p(A|{a,b,g ,h})=1/2

, {c, d , i , j}︸ ︷︷ ︸
p(A|{c,d ,i ,j})=1/2

, {e, f , k}︸ ︷︷ ︸
p(A|{e,f ,k})=1/3

, { l , m }︸ ︷︷ ︸
p(A|{l ,m})=0

},

Let A = {a, b, i , j , k}. For individual 1: attributing to A a posterior
of 1/3 corresponds to the event {a, b, c, d , e, f , }; attributing to A
a posterior of 0 corresponds to the event {l ,m}; attributing to A a
nonzero posterior corresponds to the event
{a, b, c , d , e, f , g , h, i , j , k}
For individual 2, attributing to A a posterior of 1/2 corresponds to
the event {a, b, c , d , g , h, i , j}, etc.
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Common knowledge of posteriors

Suppose that ω? = m the true state of the world. Then, individual
1 will attribute to A a posterior of 0. This fact will be common
knowledge between the two individuals, even though individual 2
does not know whether 1 has received the information that the
true states belongs to {l} or to {m}. This will be so, because for
any of these two cases, individual 1 will always have calculated a
posterior of 0.

At the same time, individual 2 will attribute to A a posterior of 0,
and this will also be common knowledge.
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Aumann’s (1976) “agreement” result

Robert Aumann, (1976) “Agreeing to disagree,” The Annals of
Statistics 4 (6): 1236-1239.

• In economics, Aumann’s paper has stimulated a rich literature.

• Derives its importance also for the formal framework that it
proposes for modeling knowledge and common knowledge
(the model relying on information partitions that we discuss in
this class).

• What is this result?

23 / 89



Proposition (Aumann 1976)

Let (Ω,B, p) a probability space, P1 and P2 two finite partitions
of Ω, measurable with respect to B, that represent the information
accessible to individual 1 respectively 2, all of this being common
knowledge between the two individuals. Let furthermore A ∈ B be
an event. If at state ω (in virtue of the common knowledge of the
prior probability and the information partitions) the posteriors q1

and q2 that the individuals attribute to A are common knowledge,
then they have to be equal: that is, q1 = q2.
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The proof

Can be understood in three steps. Step 1—conceptually the most
important—consists in establishing that common knowledge of qi
implies that for any information class of Pi that is a subset of the
information class of the meet to which belongs the true state,
Pi (ω), the conditional probability of A has to be equal to qi :

qi =
p(A ∩ Pi (ω))

p(Pi (ω))
=

p(A ∩ Pik)

p(Pik)
, ∀Pik ⊂ P̂(ω). (1)

Otherwise there would be some level of knowledge at which qi
would not be known, and therefore cannot be common knowledge.

Illustration:

P1 = {

p(A|{a,b})= 1
2︷ ︸︸ ︷

{ a, b } ,

p(A|{c,d})= 1
2︷ ︸︸ ︷

{ c, d } , {e} , {f }}
P2 = { { a, c } , { b, d }, {e, f }},

where A = {b, c}, and a the true state; P̂(a) = {a, b, c , d}
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Step 2: From (1) and the fact that the classes of i ’s partition that
are subsets P̂(ω) induce a partition of P̂(ω), one obtains that:

qi =
p(A ∩ P̂(ω))

p(P̂(ω))
. (2)

To see why (2) holds, note that (1) can be written as

p(A ∩ Pik) = qi p(Pik), ∀Pik ⊂ P̂(ω).

Summing over all Pik ⊂ P̂(ω) gives∑
Pik⊂P̂(ω)

p(A ∩ Pik) = qi
∑

Pik⊂P̂(ω)

p(Pik).

Since the Pik are disjoint (because they are elements of a
partition), and the union over all Pik -s that are subsets of P̂(ω)
gives P̂(ω), by the property of σ-additivity of the probability
measure p we have:

p(A ∩ P̂(ω)) = qi p(P̂(ω)).

Rearranging terms gives equation (2).
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Step 2 relies on the more general fact that if Ak is a sequence of
disjoint subsets of Ω and p(B | Ak) = q for all k , then
p(B | ∪Ak) = q, which is a simple consequence of the Kolmogorov
Axioms.

Illustration:

P1 = {

p(A|{a,b,c,d})= 1
2︷ ︸︸ ︷

p(A|{a,b})= 1
2︷ ︸︸ ︷

{ a, b } ,

p(A|{c,d})= 1
2︷ ︸︸ ︷

{ c, d } , {e} , {f }}
P2 = {{ a, c }, { b, d }, {e, f }}
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Step 3: Finally, from the fact that (2) has to hold for each of the
two individuals, one obtains that:

q1 =
p(A ∩ P̂(ω))

p(P̂(ω))
= q2. (3)

which concludes the proof.

Illustration:

P1 = {

p(A|{a,b,c,d})= 1
2︷ ︸︸ ︷

p(A|{a,b})= 1
2︷ ︸︸ ︷

{ a, b } ,

p(A|{c,d})= 1
2︷ ︸︸ ︷

{ c, d } , {e} , {f }}
P2 = { { a, c }︸ ︷︷ ︸

p(A|{a,c})= 1
2

, { b, d }︸ ︷︷ ︸
p(A|{b,d})= 1

2︸ ︷︷ ︸
p(A|{a,b,c,d})= 1

2

, {e, f }}
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The Aumann conditions

Putting (1)–(3) together, one has:

qi =
p(A ∩ Pi (ω))

p(Pi (ω))
=

p(A ∩ Pik)

p(Pik)
=

p(A ∩ P̂(ω))

p(P̂(ω))
∀Pik ⊂ P̂(ω), ∀ i ∈ I (4)

That is, for each i , the posterior attributed to A, given P(ω), has
to be equal to:

(1) the posterior probability of A given any of the classes Pik of
i ’s partition that are contained in the class of the meet to
which belongs the true state of the world P̂(ω), and

(2) the posterior probability of A given P̂(ω), that is, the element
of the meet to which belongs ω.

I refer to equation (4) as the Aumann conditions.
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Example (in which the Aumann conditions hold)

P1 = {{a, b}, {c , d}, {e}, {f }},
P2 = {{a, c}, {b, d}, {e, f }},

A = {b, c} the event of interest, and ω = a the true state of the
world. Uniform prior, that is, 1/6 for each possible state of the
word. Then:

q1 =
p(A ∩ P1(a))

p(P1(a))
=

p({b, c} ∩ {a, b})
p({a, b})

=
p({b})
p({a, b})

=
1

2

q2 =
p(A ∩ P2(a))

p(P2(a))
=

p({b, c} ∩ {c , a})
p({c, a})

=
p({c})
p({c, a})

=
1

2
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The meet is P̂ = {{a, b, c, d}, {e, f }}. Hence, P̂(a) = {a, b, c , d}.
Here, each i thinks it possible that the other has received any of
the classes in the others partition that are included in
P̂ = {{a, b, c , d}. However:

p({b, c} ∩ {c , d})
p({c , d})

=
p({c})

p({c , d})
=

1

2
,

p({b, c} ∩ {d , b})
p({d , b})

=
p({b})

p({d , b})
=

1

2
.

And, as it should be according to the Aumann conditions:

p({b, c} | P̂(a)) =
p({b, c} ∩ {a, b, c, d})

p({a, b, c , d})
=

p({b, c})
p({a, b, c , d})

=
1

2
.
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Illustration:

P1 = {

p(A|{a,b,c,d})= 1
2︷ ︸︸ ︷

p(A|{a,b})= 1
2︷ ︸︸ ︷

{ a, b } ,

p(A|{c,d})= 1
2︷ ︸︸ ︷

{ c, d } , {e} , {f }}
P2 = { { a, c }︸ ︷︷ ︸

p(A|{a,c})= 1
2

, { b, d }︸ ︷︷ ︸
p(A|{b,d})= 1

2︸ ︷︷ ︸
p(A|{a,b,c,d})= 1

2

, {e, f }}
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Chapter 3

Direct communication
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Imagine that after realisation of the true state of the world the two
individuals communicate to each other the information class of his
or her partition of which they have learnd that the true state of the
world belongs to it. Such an exchange of information can be
referred to as one of direct communication (see, for instance,
Geanakoplos and Polemarchakis 1982).
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What the individuals know after such an exchange is given by the
intersection of the two respective classes of their information
partitions. Over the entire range of Ω, the so defined set of subsets
of Ω is given by the coarsest common refinement of the two
partitions: their so-called join.

Definition 2 Let P1 and P2 two partitions of Ω. The join of P1

and P2, denoted by P̌ = P1 ∨P2, is the coarsest common
refinement of P1 and P2, that is, the coarsest partition of Ω such
that, for each ω ∈ Ω,

P̌(ω) ⊂ Pi (ω), ∀i ∈ I = {1, 2},

where P̌(ω) = P1 ∨ P2(ω) is the class of the join to which belongs
ω.

The classes of the join are obtained by taking for each class of one
partition its intersections with the classes of the other partition
(see, for instance Barbut 1968).
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In the Example from above:

P1 = {{a, b}, {c , d}, {e}, {f }},
P2 = {{a, c}, {b, d}, {e, f }},

The join: P̌ = {{a}, {b}, {c}, {d}, {e}, {f }}
Remember, the meet: P̂ = {{a, b, c , d}, {e, f }}
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A technical note: the matrix representation of two
partitions

Any two finite partitions can be written in the form of a matrix
such that

• the elements of the matrix are occupied by the elements of
the join of the two partitions, with possibly some elements of
the matrix empty but without any rows or columns completely
empty, and

• the information classes of one individual correspond to the
rows of the matrix and that of the other individual to the
columns of the matrix (see, for instance, Barbut 1968).

In such a matrix, the classes of the meet of the two partitions
appear as the unions of those elements of the join that have the
same empty elements along rows as well as columns.
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Example:

P1 = {{a, b}, {c, d}, {e}, {f }},
P2 = {{a, c}, {b, d}, {e, f }},

the join: P̌ = {{a}, {b}, {c}, {d}, {e}, {f }}
the meet: P̂ = {{a, b, c, d}, {e, f }}

Practical for calculating the posteriors for a certain event A: Let

A = {b, c} and ω = a the true state of the world:

{a?} {b} 1
2

{c} {d} 1
2

{e} 0

{f } 0

1
2

1
2

0
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In the figure above, for each row, to the right of the vertical line
(information class of individual 1), appears the conditional
probability of A given that row; for each column, below the
horizontal line (information class of individual 2), appears the
conditional probability of A given the column.
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Chapter 4

Bayesian Dialogues
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Geanakoplos and Polemarchakis’s (1982) scenario of
indirect communication

... Imagine that after having received their private information
about the true state of the world (according to their information
partition), the two individuals, turn in turn, communicate their
posteriors back and forth, each round extracting the information
that is contained in the announcement of the previous round.
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This process is best understood as operating through a successive
reduction of the set of possible states of the world:

• The process starts by discarding all states that are not in the
information class of the meet to which belongs the true state
of the world. Of course, because simply by having received the
information through their partitions—thanks to the common
knowledge of these partitions—it will be common knowledge
between the two individuals that any state that is not in that
class of the meet cannot be the true state of the world.

• Then, at each step t, with one of the individuals announcing
the posterior probability that he or she attributes to the event
of interest A at this step, it becomes common knowledge
between the two individuals that a certain subset of Ω at step
t cannot contain the true state of the world: namely the
union of all those partition classes of the individual who has
just announced his or her posterior that do not lead to that
posterior. This subset is discarded from Ω at step t to give Ω
at step t + 1.
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More formally:

Let Ω0 = Ω.
Step 1: Ω1 = P̂(ω?), where ω? is the true state of the world.
Step t: Ωt = Ωt−1\P̄i(t−1),t−1, where

P̄i(t),t =
⋃

i(t),k

Pi(t),k , such that
p(A ∩ Pi(t),k ∩ Ωt)

p(Pi(t),k ∩ Ωt)
6= qi(t),t ,

qi(t),t =
p(A ∩ Pi (ω) ∩ Ωt)

p(Pi (ω) ∩ Ωt)

with i(t) given by the sequence 1, 2, 1, 2, . . . if individual 1 starts,
and by 2, 1, 2, 1 . . . if individual 2 starts.
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The process ends—more precisely, will have reached an absorbing
state—when a subset of Ω is reached such that the announcement
of the posterior of any of the two individuals does not allow them
to discard any more states.

This terminal subset of Ω will be one on which the “Aumann”
conditions hold: the posteriors will be common knowledge—thanks
to the common knowledge of the information partitions induced by
the reduced set of states of the world at that step—and hence (as
Aumann’s result says) will be equal.
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A dynamic foundation of Aumann’s result

It can be shown that this process converges after a finite number of
steps to a situation in which the posteriors are common knowledge
and hence—by Aumann’s result—identical (Geanakoplos et
Polemarchakis 1982). In that sense, such a process can be
interpreted as a dynamic foundation of Aumann’s result.

One immediate observation: If the Aumann conditions are satisfied
(on the original set Ω), the process stops immediately at step 1, or
to say it more correctly, will have reached its absorbing state at
step 1.
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Depends on the order

A Bayesian dialog depends on the order in which the two
individuals announce their posteriors (see, for instance,
Polemarchakis 2016). Depending on whether it is individual 1 or
individual 2 who starts the process, the process can end with
different subsets of Ω.

Important:
On each of these two different terminal subsets of Ω, the
“Aumann” conditions hold. The process, so to say, gets “stopped”
by the Aumann conditions. But, on these two different terminal
subsets of Ω, different posteriors attributed to A in common
knowledge might arise.
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An example (in which the order matters)

Derived from an example given by Polemarchakis (2016). Let
Ω = {a, b, c , d , e, f , g , h, i , j , k} the set of possible states of the
world, endowed with uniform prior probability, that is, p(ω) = 1/11
for all possible states of the world. Furthermore let

P1 = {{a, b, c , d , e, f }, {g , h, i , j , k}},
P2 = {{a, b, g , h}, {c , d , i , j}, {e, f , k}},

A = {a, b, i , j , k}, the event of interest; and ω? = a, the true state
of the world. Here: P1 ∧P2 = {Ω}, and
P1 ∨P2 = {{a, b}, {c, d}, {e, f }, {g , h}, {i , j}, {k}}.
In matrix representation:

{a?,b} {c, d} {e, f } 1
3

{g , h} {i, j} {k} 3
5

1
2

1
2

1
3
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In this example, the outcome of a Bayesian dialogue depends on
the order in which the two individuals report their posteriors.

If individual 1 starts:

Step 1: Ω(1) = {a, b, c , d , e, f , g , h, i , j , k},
P1,Ω(1) = {{a, b, c , d , e, f }, {g , h, i , j , k}}

q1 =
p({a, b, i , j , k} ∩ {a, b, c , d , e, f })

p({a, b, c , d , e, f })
=

p({a, b})
p({a, b, c , d , e, f })

=
1

3

If individual 1 announces 1/3, then it will become common
knowledge between the two individuals that the true state cannot
belong to the set {g , h, i , j , k}, and therefore this set should be
deleted from what remains in the fund of common knowledge. The
matrix becomes:

{a?,b} {c , d} {e, f } 1
3

1 0 0
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Step 2: Ω(2) = {a, b, c , d , e, f }, P2,Ω(2) = {{a, b}, {c, d}, {e, f }}

q2 =
p({a, b} ∩ {a, b})

p({a, b})
=

p({a, b})
p({a, b})

= 1.

If individual 2 announces 1, then it will be common knowledge
between the two individuals that the true state of the world cannot
be in {c , d , e, f }, and hence this set can be deleted in common
knowledge. The matrix becomes:

{a?,b} 1

1
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Step 3: Ω(3) = {a, b}, P1,Ω(3) = {{a, b}}. Individual 1 announces
also “1,” and the process has reached its absorbing state. Note
that on the set of states that are still alive at step 3,
Ω(3) = {a, b}, the Aumann conditions are trivially satisfied
because the information partitions of the two individuals induced
by Ω(3) = {a, b} are identical: P1,Ω(3) = {{a, b}} = P2,Ω(3).

In this example, the element of the join to which belongs the true
state of the world is also {a, b}. Direct communication will
therefore also lead to a posterior of 1 attributed to A.
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But if individual 2 starts:

Step 1: Ω(1) = {a, b, c , d , e, f , g , h, i , j , k},
P2,Ω(1) = {{a, b, g , h}, {c , d , i , j}, {e, f , k}}

q1 =
p({a, b, i , j , k} ∩ {a, b, g , h})

p({a, b, g , h})
=

p({a, b})
p({a, b, g , h})

=
1

2

→ {e, f , k} can be deleted in common knowledge. But then the
matrix is:

{a?,b} {c , d} 1
2

{g , h} {i, j} 1
2

1
2

1
2

And the process of deletion ends here, with each of them
announcing 1/2 from this moment on, forever.
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If individual 1 starts: If individual 2 starts:

Step 1:
{a?,b} {c , d} {e, f } 1

3

{g , h} {i, j} {k} 3
5

1
2

1
2

1
3

{a?,b} {c , d} {e, f } 1
3

{g , h} {i, j} {k} 3
5

1
2

1
2

1
3

Step 2:

{a?,b} {c , d} {e, f } 1
3

1 0 0

{a?,b} {c , d} 1
2

{g , h} {i, j} 1
2

1
2

1
2

Step 3:
{a?,b} 1

1
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Further properties of a Bayesian dialogue

The visible trace of a Bayesian dialogue is the sequence of
announced posteriors.

It can be that at level “nothing happens,” in the sense that each of
the individuals repeats for a certain number of rounds the same
posterior, while in the background, nevertheless, the two
individuals—in common knowledge—successively discard possible
states of the world, namely all those of which it has become
common knowledge, up to that step, that they cannot be the true
state of the world.
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Example (after Aumann; see Geanakoplos et Polemarchakis 1982)

For the general parametric form (for any n) see Geanakoplos et
Polemarchakis (1982, 197). Here we see the case n = 3.

Soient Ω = {a, b, c , d , e, f , g , h, i} et p(ω) = 1/9 pour tous les
événements élémentaires. Supposons que:

P1 = {{a, b, c}, {d , e, f }, {g , h, i}},
P2 = {{a, b, c , d}, {e, f , g , h}, {i}},

A = {a, e, i}, et ω? = a.

Supposons que c’est l’individu 1 qui commence.

A l’étape 1: Ω(1) = {a, b, c , d , e, f , g , h, i},
P1,Ω(1) = {{a, b, c}, {d , e, f }, {g , h, i}},

q1 =
p({a, e, i} ∩ {a, b, c})

p({a, b, c})
=

p({a})
p({a, b, c})

=
1

3

Rien ne peut être écarté en connaissance commune.
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A l’étape 2: Ω(2) = {a, b, c , d , e, f , g , h, i},
P2,Ω(2) = {{a, b, c , d}, {e, f , g , h}, {i}},

q2 =
p({a, e, i} ∩ {a, b, c , d})

p({a, b, c , d})
=

p({a})
p({a, b, c , d})

=
1

4

Cette annonce de l’individu 2 permet d’écarter {i} en connaissance
commune; puisque {i} aurait produit l’annonce q2 = 1.

A l’étape 3: Ω(3) = {a, b, c , d , e, f , g , h},
P1,Ω(3) = {{a, b, c}, {d , e, f }, {g , h}},

q1 =
p({a, e, i} ∩ {a, b, c})

p({a, b, c})
=

p({a})
p({a, b, c})

=
1

3

Cette annonce de l’individu 1 permet d’écarter {g , h} en
connaissance commune; puisque {g , h} aurait produit l’annonce
q1 = 0.

55 / 89



A l’étape 4: Ω(4) = {a, b, c , d , e, f },
P2,Ω(4) = {{a, b, c , d}, {e, f }},

q2 =
p({a, e, i} ∩ {a, b, c , d})

p({a, b, c , d})
=

p({a})
p({a, b, c , d})

=
1

4

Cette annonce de l’individu 2 permet d’écarter {e, f } en
connaissance commune; puisque {e, f } aurait produit l’annonce
q2 = 1/2.

A l’étape 5: Ω(5) = {a, b, c , d}, P1,Ω(5) = {{a, b, c}, {d}},

q1 =
p({a, e, i} ∩ {a, b, c})

p({a, b, c})
=

p({a})
p({a, b, c})

=
1

3

Cette annonce de l’individu 1 permet d’écarter {d} en connaissance
commune; puisque {d} aurait produit l’annonce q1 = 0.
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A l’étape 6: Ω(6) = {a, b, c}, P2,Ω(6) = {{a, b, c}},

q2 =
p({a, e, i} ∩ {a, b, c})

p({a, b, c})
=

p({a})
p({a, b, c})

=
1

3

A partir de cette étape plus rien ne peut être écarté. Le processus
de communication indirecte à travers les croyances a trouvé sa fin
– son point fixe. Les deux individus vont à toujours chacun répéter
: 1/3.
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La trace visible du processus de communication indirecte, la suite
des probabilités actualisées, est:

Etape 1: q1 = 1/3
Etape 2: q2 = 1/4
Etape 3: q1 = 1/3
Etape 4: q2 = 1/4
Etape 5: q1 = 1/3
Etape 6: q2 = 1/3
Etape 7: q2 = 1/3
Etape 8: q1 = 1/3
...

Pendant cinq périodes il ne se passe “rien” à la surface des choses:
les deux individus répètent chacun ce qu’ils ont dit auparavant,
jusqu’à la sixième étape lorsque l’individu 2 annoncera aussi 1/3,
ce qui terminera le processus, c’est-à-dire qu’à partir de ce
moment-là ils vont à toujours répéter 1/3 tous les deux.
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In matrix form:

{a?, b, c} 1
3

{d} {e, f } 1
3

{g , h} {i} 1
3

1
4

1
4 1
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Any regularities in the sequence of announced posteriors stemming
from a Bayesian dialogue?

Polemarchakis (2016) has recently addressed the following
question: Is there any pattern in the sequence of announced
probabilities that stem from a Bayesian dialogue?

Polemarchakis shows that there isn’t: that for any sequence of
numbers strictly between 0 and 1, q1, q2, q3, q4, . . . , qN , one can
find a set Ω of possible states of the world and two partitions such
that that sequence is the visible trace of a Bayesian, or as
Polemarchakis says, a “rational dialogue.”

60 / 89



Le résultat est remarquable puisqu’en dehors de la condition que
les probabilités sont strictement entre 0 et 1, la suite
q1, q2, q3, q4, . . . , qN n’est contrainte par aucune autre condition;
notamment aucune condition de monotonie, ni sur les éléments de
q1, q2, q3, q4, . . . , qN ni sur les éléments des sous-suites
q1, q3, q5, . . . , ou q2, q4, q6, . . . ,.

Ceci a une interprétation forte: juste en écoutant ce que les deux
individus se disent – ou bien en examinant le procès-verbal de leur
communication – on ne peut pas dire s’ils sont engagés dans un
dialogue rationnel (dans le sens bayésien) ou pas: il n’y a rien dans
la forme extérieure de ce qu’ils se disent qui nous permettrait de
décider si ce qu’ils se disent est rationnel (dans le sens bayésien)
ou pas.
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La preuve donnée par Polemarchakis est constructive. Elle se sert
de l’écriture matricielle des deux partitions d’information.

The following example illustrates Polemarchakis’s proof.

Exemple

Soit la suite de probabilités q1 = 1
2 , q2 = 1

3 , q3 = 1
4 , q4 = 1

2 ,
q5 = 1

2 . On cherche un ensemble fondamental Ω, deux partitions
de Ω, un événement A ⊂ Ω et un état ω? ∈ Ω tels que si ω? se
réalise, le processus de communication indirecte à la Geanakopolos
et Polemarchakis laissera comme trace visible la suite des
probabilités ci-dessus, sachant qu’à partir de la sixième étape les
deux individus vont à toujours répéter 1

2 .
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Supposons que la partition fondue est la plus grossière et la
partition croisée la plus fine; c’est-à-dire, tout élément de notre
matrice sera occupé par un sous-ensemble de Ω contenant un seul
état. En outre nous supposons que tous les états ont a priori la
même probabilité de se réaliser. A ce moment, nous ne savons pas
encore combien d’états aura Ω; d’autant moins que nous ne savons
pas ce qui sera l’événement A. Ces deux éléments se décideront en
fonction de notre construction.

En ce qui concerne la représentation donnée ici, les états différents
se distinguent tout simplement par leur emplacement dans la
matrice. Un état est représenté par le symbole ◦ s’il n’appartient
pas à l’événement A, et par • s’il appartient à l’événement A.
Suivant Polemarchakis, nous supposons que l’état réalisé est celui
au croisement de la première ligne et de la première colonne.

63 / 89



On commence par la fin. A la fin on veut que les deux individus
disent 1/2. Voici une matrice qui satisfait cette condition:

• ◦ 1
2

◦ • 1
2

1
2

1
2

1 dit : q5 = 1/2
2 dit : q4 = 1/2

C’est bien sûr une situation Aumannienne. Remarquons que notre
construction n’est pas unique – ce qui ne gêne pas puisque nous
chercherons à démontrer l’existence et non l’unicité d’un certain
objet.
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Ensuite, on veut que l’individu 1, à étape 3, avant que le processus
ne trouve sa fin avec les conditions d’Aumann, ait dit 1/4.
Comment peut-on élargir la matrice pour arriver à cette fin? Une
possibilité est de rajouter tout simplement deux états
n’appartenant pas à A (deux petits cercles vides) à chaque ligne:

• ◦ ◦ ◦ 1
4

◦ • ◦ ◦ 1
4

1
2

1
2 0 0

1 dit : q3 = 1/4

Ensuite, on veut que l’individu 2, à l’étape précédente, ait dit 1/3.
Voici une extension de la matrice qui fournit ce résultat:

• ◦ ◦ ◦ 1
4

◦ • ◦ ◦ 1
4

◦ ◦ • • 1
2

1
3

1
3

1
3

1
3

2 dit : q2 = 1/3
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Et finalement on veut que tout ait commencé avec l’individu 1 qui
dit 1/2. Voici une matrice qui le traduit:

• ◦ ◦ ◦ • • 1
2

◦ • ◦ ◦ • • 1
2

◦ ◦ • • ◦ • 1
2

1
3

1
3

1
3

1
3

2
3

3
3

1 dit : q1 = 1/2

Pour faire le test, il faut remonter le fil de l’argument; il faut
commencer avec la matrice tout en bas et appliquer l’algorithme
de la communication indirecte.
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Hors compétition

AN EXPERIMENT
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An experiment

Let Ω = {a, b, c , d , e, f , g , h, i , j , k , l ,m, n, o, p, q} the set of
possible states of the world, endowed with uniform prior
probability, that is, p(ω) = 1/17 for all possible states of the world.
Furthermore let

P1 = {{a, b, c , d , e, f }, {g , h, i , j , k , l}, {m, n, o, p, q}},
P2 = {{a, b, c , g , h, i ,m, n, o}, {d , e, f , j , k, l , p, q}},

A = {a, b, c, j , k , l , p, q}, the event of interest.

In matrix representation:

{a,b, c} {d , e, f } 1
2

{g , h, i} {j, k, l} 1
2

{m, n, o} {p,q} 2
5
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In class, December 3rd, 2020, we played this game

Participation was voluntary. There was a real payoff to be won.
Students participating in the experiment could win up to 4 points
that would be added to the grade for participation in this class,
which is based on a system of 20 possible points (10 for
participation and 10 for the final essay).

The story was translated into real payoffs in the following way:

Each student who participates in the experiment gets an initial
endowment of 2 points. If the player who is asked in the third
round gives the correct answer to the question whether A happend,
then both get 4 points; if the answer is wrong, they both lose their
endowment of the 2 points (that is, they have earned nothing for
participating in the experiment). There is however also an outside
option: the player who is asked in the third round can say I do not
want to give an answer. If he or she does so, then both students
leave the experiment with their endowment of 2 points. Points
from the experiment are added to the points for participaiton in
class.
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What happened:

{a, b, c} {d , e, f } 1
2

{g , h, i} {j, k, l} 1
2

{m, n, o} {p, q} 2
5

Game 1:
Individual 1: q1 = 1/2
Individual 2: q2 = (3/8) 3/9
Individual 1: q1 = 1

Game 4:
Individual 2: q2 = 3/8
Individual 1: q1 = 1/2
Individual 2: stop

Game 2:
Individual 1: q1 = 1/2
Individual 2: q2 = 1/3
Individual 1: q1 = 1

Game 5:
Individual 2: q2 = 3/9
Individual 1: q1 = 1/2
Individual 2: q1 = 1

Game 3:
Individual 1: q1 = 1/2
Individual 2: q2 = (1/3) 9/17
Individual 1: stop.
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Observations

None of these plays of the game was according to the definition of
a Bayesian dialogue!
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The solution according to a Bayesian dialogue
If individual 1 starts:

{a,b, c} {d , e, f } 1
2

{g , h, i} {j, k, l} 1
2

{m, n, o} {p,q} 2
5

3
9

5
8

If 1 says 1
2 → common knowledge between the two that the true

state cannot belong to the last row → delete last row

{a,b, c} {d , e, f } 1
2

{g , h, i} {j, k, l} 1
2

1
2

1
2

They would be caught in the Aumann conditions!
72 / 89



• In two out of the three plays of the game in which player 1
talked first, the player who talked second, rather than
extracting information from the announcment of the player
who talked first, announced his posterior based on the
information that he had received from the director as a
function of his information partition.

• This allowed them to escape being trapped in the Aumann
conditions!

• So it was rational to do so!
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If individual 2 starts:

{a,b, c} {d , e, f } 1
2

{g , h, i} {j, k, l} 1
2

{m, n, o} {p,q} 2
5

3
9

5
8

If 2 says 3
9 →

{a,b, c} {d , e, f } 1

{g , h, i} {j, k, l} 0

{m, n, o} {p,q} 0

3
9

5
8

1 can already annonce that the probability of A is equal to 1!
74 / 89



• This is not what happend in the two plays of the game in
which individual 2 talked first that we observed (tournnaments
4 and 5): in tournament 4, the individual who talked second
(individual 1) did not announce ‘1’ but the posterior given the
information that he had received from the director. Still,
because of the structrue of the game, this let individual 2
know that 1 had received the informaiton that the true state
belong to the first column and he could confidently say: ’Yes,
event A did happen.’

• As theorists we could ask: In case that individual 2 starts, how
would have the participants in the game played the game if
the rules of the game had been that already at step 2
individual 1 has to say whether A happened or not?
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Chapter 5

Indirect communication through acts (bets)
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Imagine that someone is willing to bet 1000 euros, at a rate 1 : 1,
that a certain candidate wins a competition. It is as if the person
were publicly saying that he or she attributes a probability of at
least 50% to the event that candidate in question willl
win—assuming that the person is risk neutral and want to
maximize his or her monetary gain.
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... This information might allow another person to update the
probability that he or she thinks should be attributed to the event
that the candidate in question will win, which might influence
whether he or she want to take such a bet. If the first observes that
decsion of the second, that might in turn allow the first to update
his or her probability that candidate in question will win; etc.

If the two individuals are commonly aware of this kind of
interaction, they find themselves in a Bayesian dialouge mediated
by their actions in the betting market.
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Within the formal framework that we have studied here, assuming
that the information partitions of the two individuals are common
knowledge: if i accepts the bet, it will allow the two individuals to
discard any states from the set of possible states of the world Ω
that belong to an information class of i ’s partition which leads to a
posterior probability that the candidate in question will win of less
than 50%.
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Sebenius et Geanakoplos (1983) study such a process in more
detail. They show that after a finite number of rounds (assuming
finite information partitions)will end in a situaiton where one of the
two individuals will refuse to take the bet.

Milgrom et Stocky (1982) study a similar process for a market.
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Exemple

To illustrate the process studied by Sebenius and Geanakoplos
(1983): all possible states of the world have the same prior
probability. If the event A happened, individual 2 has to pay 1 the
sum of 1000 euros; if A did not happen, 1 has to pay to 2 the sum
of 1000 euros:

{a?,b, c, d} {e, f , g , h} {i, j} {k, l,m,n} 9
14

{o, p, q, r} {s, t,u, v} {w , x , y , z} {a′, b′} 3
14

3
8

3
8

2
6

4
6
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If individual 1 is asked first whether she wants to take the bet, she
says yes, because she attributes to A a probability of 9/14. If this
happens in front of individual 2:

{a?,b, c, d} {e, f , g , h} {i, j} {k, l,m,n} 9
14

3
4 0 1 1

If then individual 2 is asked whether he wants to take the bet, he
will refuse, which will make it common knowledge between the two
that the true state of the world cannot belong to {e, f , g , h}:

{a?,b, c, d} {i, j} {k, l,m,n} 9
10

3
4 1 1

82 / 89



Depends also on the order

Exemple

If individual 2 is asked first whether he want to take the bet or not:

{a?,b, c, d} {e, f , g , h} {i, j} 5
10

{o, p, q, r} {s, t,u, v} {w , x , y , z} 3
12

3
8

3
8

2
6

If then 1 is asked, it is possible that she accepts (but nor sure):
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If she accepts:

{a?,b, c, d} {e, f , g , h} {i, j} 5
10

3
4 0 1

At this point, individual 2 will refuse the bet, which will make it
common knowledge between the two that the true state cannot be
outside the set {a, b, c , d , i , j}:

{a?,b, c, d} {i, j} 5
6

3
4 1
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Communication through acts is not less powerful

Exemple

The same example as above, but according to the process of
indirect communication through the exact values of the posteriors
(after Geanakoplos et Polemarchakis 1982):

{a?,b, c, d} {e, f , g , h} {i, j} {k, l,m,n} 9
14

{o, p, q, r} {s, t,u, v} {w , x , y , z} {a′, b′} 3
14

3
8

3
8

2
6

4
6
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If individual 1 starts:

{a?,b, c, d} {e, f , g , h} {i, j} {k, l,m,n} 9
14

3
4 0 1 1

And 2 is asked then:

{a?,b, c, d} 3
4

3
4

,

If individual 2 starts:

{a?,b, c, d} {e, f , g , h} 3
8

{o, p, q, r} {s, t,u, v} 3
8

3
8

3
8
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