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What game theorists do ..

Definition of a game Solution concepts
Game in normal form (matrix) Nash equilibrium
Game in extensive form (tree) sequential Bayesian Nash equilibrium

e Extend existing solution concepts to more general classs of games

e Often: solution not unique; multipicity of equilibria — “refine” solution
concepts
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Signaling games

Games of incomplete information with an explicit sequential structure, given
by a game tree

e Sequential Bayesian Nash equilibrium (Kreps and Wilson 1982):
Profile of strategies and vector of beliefs for every information set, such
that:

— at every information set, player acting there chooses a best response,
given his beliefs (probability assessment) over states of Nature and
other players’ choices,

— along the path through the game induced by this profile of strategies,
beliefs are compatible with Bayes' Law.

e Problem: Often many sequential Bayesian Nash equilibria.

“Off the equilibrium path”: Bayes' Law is not defined. Shall we impose
restrictions there?
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In this talk

—— 3 approaches to “refine” sequential Bayesian Nash equilibrium:

e Impose restrictions on beliefs “off the equilibrium path”
e Index of equilibria (topological properties of associated fixed-point)

e Invariance: requirement that Nash equilibrium in normal form corresponds
to a sequential Bayesian Nash equilibrium in every extensive-form game
that maps to the same normal-form game.
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Costly-signaling game (discrete version of Spence 1973)

player 1: high type
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Case 0 < ¢; < o < 1, p < 1/2: E1 partially revealing equilibrium

nature

p: high (1—p): low

player 1 player 1
' _ P
Bayes' law: 1 1-p
o) 1
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e E1: 1 mixes between ss and s5 with lf'%p on first; 2 between aa and aa, with ¢y on first.



Case 0 < ¢ <o <1, p<1/2: P1 “no-signaling” equilibrium outcome

Off equilibrium path:
must have belief < 3

nature

p: high

(1 —p): low

player 1

¢

. hlg)=p<i
(@ with ¢; at most) (o player 2 o) Phls)=p<3
"Plausible” ? a a a \2‘1 a a a a
1—61 0—01 1 0 1—62 O—CQ 1 0
1 0 1 0 0 1 0 1
aa with y € [0,¢1] — aa aa with 1 —y — aa
S8 1—]901—(1_17)02713 1—pcy —(1_13)(32729 —pi1 — (1_17)027 1-p —pcl—(l—p)cm 1-p
sS 1 —pc, p p(l—c1), 1 —pcr+(1—=p), 0 —pci, 1 —p
ss 1—(1—=p)ca, p (I-=p)(L—c2), 0 p—(1—p)ca, 1 —(1—=pleg, 1 =p
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By Bayes’' law,

updated belief = prior:

e P1: No-signaling: 1 takes ss; 2 mix between aa and aa with y € [0, ¢1] on first.




Table 1. Equilibrium structure of the game in Figure 1: 0 <c; <cy <1

Prior Equilibrium component Index Rep. dyn. BR dyn. NWBR, Invariance Payoffs:
forward criterion
induction
p < % (E1): partially revealing/ +1 stable as. stable yes invariant h:co—c
partially pooling in s: £:0
(1, 125, ¢2,0) 2:1—p
(P1): pooling in s: 0 unstable unstable no not invariant  h: 0
(0,0,,0), y € [0, c1] 00
2:1—p
p> 3 (E2): partially revealing/ -1 unstable unstable yes invariant h:1—c
partially pooling in s: :1—c
(1—1%’,0,1,1—(;1) 2:p
(P2): pooling in s: +1  stable as. stable yes invariant h:l—c¢
(1,1,L,y). ¢y €[0,1 -y 01— cy
2:p
(P3): pooling in s: +1  as.stable as. stable yes not invariant  h:
(0,0,9,1), y € [0,1] 1
2:p
p=3 (EL'-P2): pooling in s: +1  stable as. stable yes invariant h: [ea —ec1,1 — ]
(1,1,9,9), y € [ea,1], 0: 0,1 — co]
y €10,y —ca]) 2: 3
(P1-E2'-P3): pooling in s: 0  unstable unstable only when not invariant  h: [0, 1]
(0,0,5,9"), (%) € [0, 1], y €l—ci,1] ¢ 10, 1]
y<y +a 2: 3




Table 1. Equilibrium structure of the game in Figure 1: 0 <c; <cy <1

Prior
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1) The index of equilibria

Shapley (1974): Index, +1 or —1, to every regular equilibrium
e Strict equilibrium has index +1.
e Removing or adding unused strategies does not change the index.

e Index Theorem: the sum of the indices of all equilibria is +1.

Hofbauer and Sigmund (1988, 1998): index as the sign of the determinant of
the negative Jacobian of the replicator dynamics

Ritzberger (1994, 2002): extends this to equilibrium components:
e Index as an integer, such that the sum over all components is again +1

e Robust under payoff perturbations: Let C' be a component and U an open
neighborhood of C' such that all equilibria in the closure of U are already
in C. Let C° be the set of all equilibria of the perturbed game that lie in
U—the finite union of connected components C7,...,C;. By Brouwer's
degree theory, the sum of the indices of C7, ..., C} equals the index of
C'. (C° might be empty—but only if C' has index 0.)



Demichelis and Ritzberger (2003):

e If an equilibrium component is asymptotically stable under some evolu-
tionary dynamics, then its index equals its Euler characteristics.

If it is convex or contractible, then its index is +1.



In our game (based on Hofbauer and Pawlowitsch 2023):
p<1/2:

e E1: Isolated and quasistrict — regular
— removing unused strategies — 2 X 2 cyclic game
— in this game, E1 only equilibrium — index +1
= candidate for asymptotically stable equilibrium

e P1: by Index Theorem — index 0
= not asymptotically stable, under no evolutionary dynamics
p>1/2:
e P2: by robustness — index +1

e E2: Isolated and quasistrict — regular

— removing unused strategies — 2 X 2 coordination game with 3 equilibria:
E2 and two strict equilibria (index +1)

— by Index Theorem — index —1.

e P3: by Index Theorem — index +1



Replicator dynamics
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2) Restricting beliefs “off the equilibrium path”

In signaling games: “off the equilibrium path” = after an unused signal

e Cho and Kreps (1987): “never-a-weak-best-response” criterion
e Banks and Sobel (1987): “divinity”
e Govindan and Wilson (2009): “forward induction”

— all coincide here. Quite weak selection force: discard the no-signaling
equilibrium outcome P1; all other equilibria survive (for the two generic cases

p<1/2andp>1/2).
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p<1/2:

P1 (ss — a): NOT robust against “belief-based” refinements:
responses of player 2 to the off-the-equilibrium-path signal s:

Never-a-weak-best-response criterion:
when y = ¢;: s alternative BR for high type

s BR \ftr hig — after s, only high type maintained
If full belief on high:
| sBRBriow | 5 chould take a — - clash with P1!
0000 -P1 0010
a a
y = 0 y = Cl y = CQ y — 1

p>1/2:

P2 (ss — a): robust against “belief-based” refinements:
responses of player 2 to the off-the-equilibrium-path signal s:

Never-a-weak-best-response criterion: when y' =1 — ¢,
S alternative BR for low type
rull belief on | 5 BRiEr low — after s, only low type maintained
ull belief on low:
2 Sh0u|d take a / S BR br hlgh ‘
= in line with B2 N

1110 -P2 1111

a a
y =0 Y =1—c/=1-¢1 y =1



3) Invariance

Kohlberg and Mertens (1986) : a Nash equilibrium should be selected only if it
corresponds to a sequential Bayesian Nash equilibrium in every extensive-form
game that maps to the same (reduced) normal form.

Govindan and Wilson (2009):

invariance = forward induction = never-a-weak-best-response, “divinity”

For the game studied here:

invariance = forward induction < never-a-weak-best-response, “divinity”



p < 1/2: P1 (index 0) not forward induction = not invariant

player 1
5s 55
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p < 1/2: P1 (index 0) not forward induction = not invariant

player 1
player 1
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Ss 1—(1—=p)eg, p (1-p)(1—=¢2),0 p—(1—=p)cy, 1 —(1—p)cg, 1 —p
aa aa aa aa




Case p > 1/2, 2p — 1 < (1 — p)ca — pey, which guarantees that ss (high 5, low s) is strictly dominated
by ss: equilibrium outcome P3, in which both types of player 1 use s and player 2 accepts (@) (and can
have any reaction to s) has index +1 and satisfies forward induction ... Is it a sequential equilibrium in the

following extensive-form game?
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SS 1, p 0,1—p 1, p 0,1—p




Case p > 1/2, 2p — 1 < (1 — p)ca — pey, which guarantees that ss (high 5, low s) is strictly dominated
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Phenomena explained:

When prior is low, p < 1/2:
e Partially revealing equilibrium (E1):

costly signal becomes a means to shape the belief of the other; specif-
ically: “push the belief of the other up” — for of “indirect speech”

e (E1) welfare-improving over “no-signaling” equilibrium outcome (P1).
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When prior is high, p > 1/2:

e both routinely using the costly signal (P2) and routinely not using costly
signal (P3) are strategically and evolutionarily stable equilibrium outcomes

— overstatement (P2) and understatement (P3)

— P2: Social tragedy: everybody needs to signal, but signal carries no
information!

— P3 can also be interpreted as “countersignaling”

e co-existence of these two equilibrium outcomes — possible source of dis-
crimination: when (P2) or (P3) is linked to some other observable char-
acteristic
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