Beliefs "off the equilibrium path," the Index of equilibria, and Invariance

Christina Pawlowitsch

Université Paris-Panthéon-Assas

Based partly on joint work Josef Hofbauer

Probabilities and Interaction
December 21, 2023

What game theorists do ..

Definition of a game Solution concepts

Game in normal form (matrix) Nash equilibrium

Game in extensive form (tree) sequential Bayesian Nash equilibrium

- Extend existing solution concepts to more general classs of games
- Often: solution not unique; multipicity of equilibria —> "refine" solution concepts

Signaling games

Games of incomplete information with an explicit sequential structure, given by a game tree

- Sequential Bayesian Nash equilibrium (Kreps and Wilson 1982):
 Profile of strategies and vector of beliefs for every information set, such that:
 - at every information set, player acting there chooses a best response, given his beliefs (probability assessment) over states of Nature and other players' choices,
 - along the path through the game induced by this profile of strategies,
 beliefs are compatible with Bayes' Law.
- Problem: Often many sequential Bayesian Nash equilibria.
 "Off the equilibrium path": Bayes' Law is not defined. Shall we impose restrictions there?

In this talk

- → 3 approaches to "refine" sequential Bayesian Nash equilibrium:
 - Impose restrictions on beliefs "off the equilibrium path"
 - Index of equilibria (topological properties of associated fixed-point)
 - Invariance: requirement that Nash equilibrium in normal form corresponds to a sequential Bayesian Nash equilibrium in every extensive-form game that maps to the same normal-form game.

Costly-signaling game (discrete version of Spence 1973)

	aa	aa	aa	aa
SS	$1 - pc_1 - (1 - p)c_2, p$	$1 - pc_1 - (1 - p)c_2, p$	$-pc_1-(1-p)c_2, 1-p$	$-pc_1-(1-p)c_2, 1-p$
${f sar s}$	$1-pc_1, p$	$p(1-c_1), 1$	$-pc_1 + (1-p), 0$	$-pc_1, 1-p$
$\bar{\mathbf{s}}\mathbf{s}$	$1-(1-p)c_2, p$	$(1-p)(1-c_2), 0$	$p-(1-p)c_2, 1$	$-(1-p)c_2, 1-p$
$\overline{\mathbf{s}}\overline{\mathbf{s}}$	1, p	0, 1-p	1, p	0, 1-p

Case $0 \le c_1 < c_2 < 1$, p < 1/2: E1 partially revealing equilibrium

• E1: 1 mixes between $s\bar{s}$ and $s\bar{s}$ with $\frac{p}{1-p}$ on first; 2 between $a\bar{a}$ and $\bar{a}a$, with c_2 on first.

Case $0 \le c_1 < c_2 < 1$, p < 1/2: P1 "no-signaling" equilibrium outcome

• P1: No-signaling: 1 takes $\bar{s}\bar{s}$; 2 mix between $a\bar{a}$ and $\bar{a}\bar{a}$ with $y \in [0, c_1]$ on first.

Table 1. Equilibrium structure of the game in Figure 1: $0 \le c_1 < c_2 < 1$							
Prior	Equilibrium component	Index	Rep. dyn.	BR dyn.	NWBR,	Invariance	Payoffs:
					forward induction	criterion	
$p < \frac{1}{2}$	(E1): partially revealing/	+1	stable	as. stable	yes	invariant	$h:c_2-c_1$
	partially pooling in s :						$\ell:0$
	$(1, \frac{p}{1-p}, c_2, 0)$						2:1-p
	(P1): pooling in \bar{s} :	0	unstable	unstable	no	not invariant	h: 0
	$(0,0,y,0)$, $y \in [0,c_1]$						<i>ℓ</i> : 0
							2:1-p
$p > \frac{1}{2}$	(E2): partially revealing/	-1	unstable	unstable	yes	invariant	$h: 1-c_1$
	partially pooling in \bar{s} :						ℓ : 1 – c_1
	$(1 - \frac{1-p}{p}, 0, 1, 1 - c_1)$						2:p
	(P2): pooling in s:	+1	stable	as. stable	yes	invariant	$h: 1-c_1$
	$(1,1,1,y')$, $y' \in [0,1-c_2]$						ℓ : $1-c_2$
							2:p
	(P3): pooling in \bar{s} :	+1	as. stable	as. stable	yes	not invariant	h: 1
	$(0,0,y,1)$, $y \in [0,1]$						<i>ℓ</i> : 1
							2:p
$p = \frac{1}{2}$	(E1'-P2): <i>pooling in s:</i>	+1	stable	as. stable	yes	invariant	$h: [c_2-c_1, 1-c_1]$
	$(1,1,y,y')$, $y \in [c_2,1]$,						ℓ : $[0, 1 - c_2]$
	$y' \in [0, y - c_2])$						$2:rac{1}{2}$
	(P1-E2'-P3): pooling in \bar{s} :	0	unstable	unstable	only when	not invariant	h: [0,1]
	$(0,0,y,y')$, $(y,y')\in [0,1]^2$,				$y' \in [1-c_1, 1]$		ℓ : $[0,1]$
	$y \le y' + c_1$						$2:rac{1}{2}$
1							

Table 1. Equilibrium structure of the game in Figure 1: $0 \le c_1 < c_2 < 1$								
	Prior	Equilibrium component	Index	Rep. dyn.	BR dyn.	NWBR,	Invariance	Payoffs:
						forward induction	criterion	
	$p < \frac{1}{2}$	(E1): partially revealing/	+1	stable	as. stable	yes	invariant	$h:c_2-c_1$
		partially pooling in s :						$\ell:0$
		$(1,rac{p}{1-p},c_2,0)$						2:1-p
		(P1): pooling in \bar{s} :	0	unstable	unstable	no	not invariant	h: 0
		$(0,0,y,0)$, $y \in [0,c_1]$						<i>l</i> : 0
								2:1-p
	$p > \frac{1}{2}$	(E2): partially revealing/	-1	unstable	unstable	yes	invariant	$h: 1-c_1$
		partially pooling in $ar{s}$:						ℓ : $1-c_1$
		$(1 - \frac{1-p}{p}, 0, 1, 1 - c_1)$						2:p
		(P2): pooling in s:	+1	stable	as. stable	yes	invariant	$h: 1-c_1$
		$(1,1,1,y')$, $y' \in [0,1-c_2]$						ℓ : $1-c_2$
								2:p
		(P3): pooling in \bar{s} :	+1	as. stable	as. stable	yes	not invariant	h: 1
		$(0,0,y,1)$, $y \in [0,1]$						<i>ℓ</i> : 1
								2:p

1) The index of equilibria

Shapley (1974): Index, +1 or -1, to every regular equilibrium

- Strict equilibrium has index +1.
- Removing or adding unused strategies does not change the index.
- Index Theorem: the sum of the indices of all equilibria is +1.

Hofbauer and Sigmund (1988, 1998): index as the sign of the determinant of the negative Jacobian of the replicator dynamics

Ritzberger (1994, 2002): extends this to equilibrium components:

- ullet Index as an integer, such that the sum over all components is again +1
- Robust under payoff perturbations: Let C be a component and U an open neighborhood of C such that all equilibria in the closure of U are already in C. Let C^{ε} be the set of all equilibria of the perturbed game that lie in U—the finite union of connected components $C_1^{\varepsilon}, \ldots, C_k^{\varepsilon}$. By Brouwer's degree theory, the sum of the indices of $C_1^{\varepsilon}, \ldots, C_k^{\varepsilon}$ equals the index of C. (C^{ε} might be empty—but only if C has index 0.)

Demichelis and Ritzberger (2003):

• If an equilibrium component is asymptotically stable under some evolutionary dynamics, then its index equals its Euler characteristics.

If it is convex or contractible, then its index is +1.

In our game (based on Hofbauer and Pawlowitsch 2023):

$$p < 1/2$$
:

- ullet E1: Isolated and quasistrict \longrightarrow regular
 - removing unused strategies $\longrightarrow 2 \times 2$ cyclic game
 - in this game, E1 only equilibrium \longrightarrow index +1
 - ⇒ candidate for asymptotically stable equilibrium
- P1: by Index Theorem \longrightarrow index 0
 - ⇒ not asymptotically stable, under no evolutionary dynamics

$$p > 1/2$$
:

- P2: by robustness \longrightarrow index +1
- E2: Isolated and quasistrict → regular
 - removing unused strategies $\longrightarrow 2 \times 2$ coordination game with 3 equilibria:
 - E2 and two strict equilibria (index +1)
 - by Index Theorem \longrightarrow index -1.
- P3: by Index Theorem \longrightarrow index +1

Replicator dynamics

2) Restricting beliefs "off the equilibrium path"

In signaling games: "off the equilibrium path" = after an unused signal

- Cho and Kreps (1987): "never-a-weak-best-response" criterion
- Banks and Sobel (1987): "divinity"
- Govindan and Wilson (2009): "forward induction"

 \rightarrow all coincide here. Quite weak selection force: discard the no-signaling equilibrium outcome P1; all other equilibria survive (for the two generic cases p < 1/2 and p > 1/2).

p < 1/2:

P1 $(\bar{s}\bar{s} \to \bar{a})$: NOT robust against "belief-based" refinements: responses of player 2 to the off-the-equilibrium-path signal s:

p > 1/2:

P2 ($ss \rightarrow a$): robust against "belief-based" refinements: responses of player 2 to the off-the-equilibrium-path signal \bar{s} :

3) Invariance

Kohlberg and Mertens (1986): a Nash equilibrium should be selected only if it corresponds to a sequential Bayesian Nash equilibrium in every extensive-form game that maps to the same (reduced) normal form.

Govindan and Wilson (2009):

invariance \Rightarrow forward induction \Rightarrow never-a-weak-best-response, "divinity"

For the game studied here:

invariance \Rightarrow forward induction \Leftrightarrow never-a-weak-best-response, "divinity"

 $\mathbf{p} < \mathbf{1/2}$: P1 (index 0) not forward induction \Rightarrow not invariant

	aa	aā	āa	āā	
SS	$1 - pc_1 - (1 - p)c_2, p$	$1 - pc_1 - (1 - p)c_2, p$	$-pc_1-(1-p)c_2, 1-p$	$-pc_1-(1-p)c_2, 1-p$	
$s\overline{s}$	$1-pc_1, p$	$p(1-c_1), 1$	$-pc_1 + (1-p), 0$	$-pc_1, 1-p$	
$\bar{\mathbf{s}}\mathbf{s}$	$1-(1-p)c_2, p$	$(1-p)(1-c_2), 0$	$p-(1-p)c_2, 1$	$-(1-p)c_2, 1-p$	
$\overline{\mathbf{S}}\overline{\mathbf{S}}$	1, p	0, 1-p	1, <i>p</i>	0, 1-p	

 $\mathbf{p} < \mathbf{1/2}$: P1 (index 0) not forward induction \Rightarrow not invariant

	aa	aa	aa	aa
$\overline{\mathbf{S}}\overline{\mathbf{S}}$	1, p	0, 1-p	1, p	0, 1-p

Case $\mathbf{p} > \mathbf{1/2}$, $2p-1 < (1-p)c_2 - pc_1$, which guarantees that $\bar{s}s$ (high \bar{s} , low s) is strictly dominated by $s\bar{s}$: equilibrium outcome P3, in which both types of player 1 use \bar{s} and player 2 accepts (a) (and can have any reaction to s) has index +1 and satisfies forward induction ... Is it a sequential equilibrium in the following extensive-form game?

	aa	aa aā		āā	
SS	$1 - pc_1 - (1 - p)c_2, p$	$1 - pc_1 - (1 - p)c_2, p$	$-pc_1-(1-p)c_2, 1-p$	$-pc_1-(1-p)c_2, 1-p$	
$s\bar{s}$	$1-pc_1, p$	$p(1-c_1), 1$	$-pc_1 + (1-p), 0$	$-pc_1, 1-p$	
$\overline{\mathbf{s}}\mathbf{s}$	$1-(1-p)c_2, p$	$(1-p)(1-c_2), 0$	$p-(1-p)c_2, 1$	$-(1-p)c_2, 1-p$	
$\overline{\mathbf{s}}\overline{\mathbf{s}}$	1, p	0, 1-p	1, p	0, 1-p	

Case $\mathbf{p} > \mathbf{1/2}$, $2p-1 < (1-p)c_2 - pc_1$, which guarantees that $\bar{s}s$ (high \bar{s} , low s) is strictly dominated by $s\bar{s}$: equilibrium outcome P3, in which both types of player 1 use \bar{s} and player 2 accepts (a) (and can have any reaction to s) has index +1 and satisfies forward induction ... Is it a sequential equilibrium in the

Phenomena explained:

When prior is low, p < 1/2:

- Partially revealing equilibrium (E1):
 - costly signal becomes a means to shape the belief of the other; specifically: "push the belief of the other up" —> for of "indirect speech"
- (E1) welfare-improving over "no-signaling" equilibrium outcome (P1).

When prior is high, p > 1/2:

- both routinely using the costly signal (P2) and routinely not using costly signal (P3) are strategically and evolutionarily stable equilibrium outcomes
 - overstatement (P2) and understatement (P3)
 - P2: Social tragedy: everybody needs to signal, but signal carries no information!
 - P3 can also be interpreted as "countersignaling"
- ullet co-existence of these two equilibrium outcomes o possible source of discrimination: when (P2) or (P3) is linked to some other observable characteristic

References

- [1] Banks, J. S., and J. Sobel. 1987. Equilibrium selection in signaling games, *Econometrica* 55 (3): 647–661.
- [2] Cho, I-K., D. M. Kreps. 1987. Signaling games and stable equilibria. *Quarterly Journal of Economics*, 102 (2): 179–221.
- [3] Demichelis, S., Ritzberger K. 2003. From evolutionary to strategic stability. *Journal of Economic Theory* 113 (1): 51–75.
- [4] Govindan, S., Wilson, R., 2009. On forward induction. Econometrica 77 (1): 1-28.
- [5] Hofbauer, J. Sigmund, K. 1988. *The Theory of Evolution and Dynamical Systems*, Cambridge UK: Cambridge University Press.
- [6] Hofbauer, J., Sigmund, K. 1998. *Evolutionary Games and Population Dynamics*, Cambridge UK: Cambridge University Press.
- [7] Kohlberg, E., Mertens J.-F. 1986. On the strategic stability of equilibria. *Econometrica* 54(5): 1003–1037.
- [8] Kreps, D. M., Wilson, R. 1982. Sequential equilibria. Econometrica, 50 (4): 863-894.
- [9] Kuhn, H. W. 1950. Extensive games. Proceedings of the National Academy of Sciences, 36: 570-576.
- [10] Kuhn, H. W. 1953. Extensive games and the problem of information. In: H. W. Kuhn and A. W. Tucker (Eds.), *Contributions to the Theory of Games*, Vol. II, Princeton, Princeton University Press, 193–216.
- [11] Nash, J. 1950. Equilibrium points in n-person games. *Proceedings of the National Academy of Sciences*, 36: 48–49.

- [12] Nash, J. 1951. Noncooperative games. The Annals of Mathematics, 54 (2): 286–295.
- [13] Ritzberger, K. 1994. The theory of normal form games from the differentiable viewpoint. *International Journal of Game Theory* 23: 207–236.
- [14] Ritzberger, K. 2002. Foundations of Non-Cooperative Game Theory, Oxford University Press.
- [15] Shapley, L. S. 1974. A note on the Lemke-Howson algorithm. *Mathematical Programming Study* 1: 175–189.
- [16] Spence, M. 1973. Job market signaling. Quarterly Journal of Economics, 87 (3): 355–374.