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Abstract

The theory of costly signaling (Spence 1973) is a well-established paradigm in economics

and theoretical biology, where it is also known as the Handicap Principle (Zahavi 1975).

Nevertheless, while costly-signaling games have been extensively studied in classical game

theory (focused on Nash equilibrium and its refinements), evolutionary dynamics in costly-

signaling games are relatively unexplored. In this paper, we give a comprehensive account

of evolutionary dynamics in two canonical classes of games with two states of nature, two

signals, and two possible reactions to signals: a model with differential signaling costs (as

in Spence’s 1973 model) and a model with differential benefits from success (similarly as in

Milgrom and Roberts’s 1986, respectively Grafen’s 1990 model). We first use index theory to

give a necessary condition for the dynamic stability of the equilibria in these games. Then,

we study the replicator dynamics and the best-response dynamics. Along the way, we relate

our findings to equilibrium analysis based on classical equilibrium-refinement methods that

test for the plausibility of beliefs ‘off the equilibrium path.’

Keywords: Costly-signaling games, handicap principle, index theory, replicator dynamics,

periodic orbits, best-response dynamics, equilibrium refinement, never-a-weak-best-response

criterion, ‘divinity,’ intuitive criterion.
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1 Introduction

“The term ‘market signaling’ is not exactly a part of the well-defined, technical vocabulary of the

economist,” Michael Spence wrote in 1973 as the opening phrase of his now famous article “Job

Market Signaling.” “As a part of the preamble, therefore,” Spence added, “I feel I owe the reader

a word of explanation about the title.” Today, fifty years later, caveats of this kind are obsolete:

Market signaling, the theory of costly signaling, is part of the well-defined, technical vocabulary

of the economist—thanks to Spence’s contribution.

Costly-signaling theory, or the Handicap Principle, as it is known in theoretical biology (Zahavi

1975), provides a rationale for the phenomenon that an observable variable of choice that comes

at a cost (educational credentials, advertising) or an observable trait that represents a ‘handicap’

for the individual carrying it (a prominent tail, elaborate plumage) indicates some unobservable

characteristic, such as performance, quality, or reproductive fitness. The theory explains the

informational content of such signals in terms of differential costs, for different individuals, of the

variable or trait that functions as a signal. Applications span over a wide range of phenomena

studied in the social and natural sciences: education as a signal for productivity in the job market

(Spence 1973), dividend payments as a signal for a firm’s fundamentals (Miller and Rock 1985),

advertising as a signal for product quality (Milgrom and Roberts 1986), ‘handicaps’ as signals for

high-fitness types in mate selection (Zahavi 1975), predator-prey (Caro 1986a, 1986b, Bergstrom

and Lachmann 2001), or parasite-host interaction (Archetti 2008), the begging of offspring as a

signal for their need (Godfray 1991, Maynard Smith 1991), the practice of inefficient foraging

strategies, embodied handicaps, risky behavior (Bliege Bird et al. 2001, Bliege Bird and Smith

2005), or politeness in language (Van Rooy 2003) as signals in social relationships.

Still and all, while costly-signaling games have been extensively studied in classical game

theory (focused on Nash-equilibrium and its refinements), the analysis of evolutionary dynamics

in costly-signaling games is relatively unexplored—leaving not only many applications of costly-

signaling theory without mathematical foundation (notably in the social and biological sciences)

but possibly also part of the explanatory potential of these models unexploited.

The idea to consider dynamic processes of costly-signaling phenomena is not new though.

Spence, in his original contributions (1973, 1974) already appeals to a dynamic argument as a

justification for the signaling equilibria that he considers in the context of market interactions.

Spence’s original modeling framework, however, it should be noted, is not game theory. It bears

in many aspects the traits of partial-market-equilibrium analysis and is restricted to what in a

game-theoretic language one would call pure-strategy equilibria: In Spence’s (1973) model, the

uninformed party, the employer, is by definition supposed to pay the expected marginal prod-

uct (instead of endowing her with a payoff function and considering her actions an endogenous
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strategic variable determined in equilibrium), and the informed party, the job candidate, is by

definition assumed to have a unique signal as the best response for every possible reaction that

the uninformed party can have to signals. Furthermore, signaling equilibria are ex-ante assumed

to fully reveal the type of the informed party, which amounts to an exclusion of mixed-strategy,

partially revealing/partially pooling equilibria. In his thesis, later published as a book (1974),

Spence considers a dynamic, discrete-time process operating on a finite state space set up in this

framework (analyzed in more detail by Nöldeke and Samuelson 1997), which by definition, in finite

time, reaches either a stationary state or a cycle.

It was only later, in the context of the equilibrium-refinement literature of the 1980s, that

costly-signaling games have been explicitly formulated in the language of game theory. Among

the first to do that were Cho and Kreps (1987). Building on ideas formulated by Kreps and

Wilson (1982) and Kohlberg and Mertens (1986), Cho and Kreps test the robustness of sequential

Bayesian Nash equilibria in signaling games by restricting beliefs off the equilibrium path (in the

hypothetical case that a signal was observed that is never used in the equilibrium under study),

which, in their rendering of Spence’s model, allows them to discard the no-signaling–no-acceptance

equilibrium outcome and select the fully revealing equilibrium. By the model specification and the

choice of parameters, the focus on these two kinds of equilibria—and the abstraction from mixed-

strategy, partially revealing/partially pooling equilibria—persists, however, also in this account.

The dynamic stability of equilibria in costly-signaling games, naturally, has elicited more inter-

est in theoretical biology. In this literature, too, for a long time, researchers have focused on fully

revealing equilibria, ‘honest’ signaling equilibria as is also said, with parameters of the models

chosen in such a way as to ensure the existence of these equilibria (see, for instance, Grafen 1990

and Maynard Smith 1991). The criterion used to test the stability of equilibria in this line of

research first has been that of an evolutionarily stable strategy (ESS), after Maynard Smith and

Price (1973), which, notwithstanding its name, is a static refinement of Nash equilibrium. The

ESS criterion, in this context, at first sight, readily gives the desired result: fully revealing equi-

libria are strict Nash equilibria, and these trivially satisfy the ESS criterion. Later, researchers

in theoretical biology have, however, been attentive to the fact that the conditions under which

fully revealing equilibria exist, might for many applications be overly restrictive, and they have

pointed out that under fairly plausible parameter constellations, mixed-strategy, partially reveal-

ing/partially pooling equilibria, in which the high type expresses the costly signal for sure while

the low type expresses it in some frequency—hybrid equilibria as is also said—might exist (see, for

instance, Bergstrom and Lachmann 1997).

Following up on these observations, researchers in theoretical biology have turned to the study

of specific evolutionary dynamics in costly-signaling games in which such ‘hybrid’ equilibria appear.

Pioneering work has been done by Huttegger and Zollman (2010), Wagner (2013), and Zollman,
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Bergstrom, and Huttegger (2013). In this line of research, authors have concentrated on showing

that ‘hybrid’ equilibria can have some form of local stability under standard evolutionary dynamics.

Zollman, Bergstrom, and Huttegger (2013), for instance, show that in a discrete variant of Spence’s

respectively Grafen’s model with two states of nature, two signals, and two reactions to signals,

under the replicator dynamics, the ‘hybrid’ equilibrium—provided that parameters are such that

it exists—is surrounded by closed orbits in its supporting 2-dimensional face, which, in turn,

attracts an open set of nearby states. Their analysis is, however, restricted to certain parameter

constellations (notably to the case that the frequency on the high type is below a certain critical

value) and leaves critical aspects in the development of results unexplored.

The purpose of this article is to complement these results and relate them to classical equilibrium-

refinement methods in signaling games that rely on testing the plausibility of beliefs ‘off the equi-

librium path.’

More specifically, we give a comprehensive account of the equilibrium structure and evolution-

ary dynamics in the two classes of games with two states of nature (‘high’ and ‘low’), two signals

(a costly signal and the absence of that costly signal), and two possible reactions in response to

signals (‘accept’ and ‘do not accept’) studied also by Zollman, Bergstrom, and Huttegger (2013),

namely:

(I) a game in which the production of the costly signal is of different costs for different types,

which can be considered a discrete variant of Spence’s (1973) model, and

(II) a game in which the production of the costly signal is of the same cost for different types,

but types have different benefits if the signal has the desired effect, which can be considered

a discrete and simplified variant of Milgrom and Robert’s (1986) model of advertising and,

to some extent, Grafen’s (1990) formalization of the Handicap Principle.

To be more precise, we first conduct our analysis for class I and then show that class II can be

derived from class I under appropriate parameter substitutions.

In Section 2, we give an account of the equilibria in class I—both in terms of the Nash equilibria

in the normal form as well as the sequential Bayesian Nash equilibria in the extensive form—by

making a case distinction along two lines:

(1) We distinguish three cases of signaling costs, namely, whether the cost of the signal for

the low type is (i) below, (ii) equal to, or (iii) strictly higher than the benefit from being

accepted.

(2) We distinguish three cases of the prior probability distribution over types, namely, whether

the probability of the high type p is below (the case considered by Zollman, Bergstrom,

and Huttegger), above, or equal to the probability at which player 2 is indifferent between

accepting or not.
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The distinction made under (1) amounts to ‘splitting up’ Spence’s model, which has a continuous

signaling space, into three paradigmatic cases displaying different patterns in equilibria. The

distinction made under (2) exhausts all possible equilibrium structures, for any of the three cases

defined under (1). This detailed case distinction allows us to expose under which conditions

regarding signaling costs fully revealing equilibria exist and how the ‘meaning’ of a signal changes

as a function of the prior probability distribution over types.

In Section 3, as a first step into the dynamic analysis, we make use of index theory (Shapley

1974, Hofbauer and Sigmund 1988, 1998, Ritzberger 1994, 2002, Demichelis and Ritzberger 2003)

to give a necessary condition, namely having an index of +1, for the asymptotic stability of the

equilibrium components under a wide range of evolutionary dynamics in these games. Then, we

study in detail the replicator dynamics and to some extent the best-response dynamics. Building

on Gaunersdorfer, Hofbauer, and Sigmund (1991), respectively Cressmann (2003), we show that for

our classes of games, the replicator dynamics in the 2-player, normal-form game, which gives rise to

a 6-dimensional system, is foliated into a 2-parameter family of 4-dimensional invariant manifolds

and that on the central invariant manifold—sometimes referred to as the Wright manifold—

it coincides with the dynamics in the 4-player game defined by the behavior strategies in the

extensive form (Proposition 1, Lemma 1). Then, we study the replicator dynamics on this central

invariant manifold. For each of the nine subclasses of games that we consider, we determine

the rest points of the replicator dynamics, study the qualitative behavior of the dynamics near

them, and investigate convergence on the central invariant manifold, showing that all interior

orbits converge to some Nash-equilibrium component or to the union of the 2-dimensional faces

containing them (Propositions 2–12). For the class corresponding to the case studied by Zollman,

Bergstrom, and Huttegger (cost of the signal for the low type lower than the benefit from being

accepted and prior probability of the high type below the critical value), we recover the periodic

cycles around the partially revealing/partially pooling, ‘hybrid,’ equilibrium (which has index +1),

with its supporting face attracting an open set of nearby states. For the best-response dynamics,

we show a projection result (Proposition 13, Lemma 2) dual to the ‘invariant-foliation’ result

concerning the replicator dynamics. Building on that, we study convergence and local stability

of the equilibrium components under the best-response dynamics (Proposition 14-16). We show

in particular that under the best-response dynamics, the partially revealing/partially pooling,

‘hybrid’ equilibrium, which exists under low signaling costs and a low prior probability of the high

type, is not only stable but asymptotically stable. In more general terms, our study of the two

evolutionary processes shows the following: equilibrium components with index +1, which notably

includes fully revealing, ‘honest,’ and partially revealing, ‘hybrid,’ equilibria (which structurally

represent the same equilibrium component under different parameter constellations), whenever

they exist, are stable under the replicator dynamics and asymptotically stable under the best-
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response dynamics, while all other equilibrium components, notably no-signaling-no-acceptance

equilibrium components, are unstable.

In Section 4, we show how our results for class I (differential costs of producing the signal)

translate to class II (differential benefits from being accepted), respectively, a mixed model com-

bining the two features, by a simple parameter substitution.

In Section 5, we relate our findings to classical equilibrium-refinement methods, focusing on

three prominent criteria: the never-a-weak-best-response criterion (Kohlberg and Mertens 1986),

‘divinity’ (Banks and Sobel, 1987), and the intuitive criterion (Cho and Kreps, 1987).

In section 6, we summarize and comment on our results.

2 The model

Costly-signaling theory starts from a problem of asymmetric information. A player (the hiring

firm, the potential buyer, the female) in principle wants to conclude an exchange with some other

player (the job candidate, the firm offering its shares or a product, the male), but only if the other

player is by nature of a certain type, namely, of high productivity, high quality, high performance,

high fitness, etc. The type of that other player—the state of nature—is not directly observable.

Therefore, the player who has to take the choice of whether to hire, buy, mate, etc., cannot

condition her choice on the other player’s type. Of course, whether the player under consideration

should accept or not depends on the gains that she has from accepting or not, as a function of the

other player’s types, and the probability that she attributes to the other player’s types. So far,

then, this is simply a problem of choice under uncertainty or ‘game against nature.’

One immediately realizes, though, what the social dilemma emanating from such a game

against nature might be: the informed party (the job candidate, the firm offering its shares or a

product, the male) might effectively be of the high type, but if the probability attributed to that

type (the frequency of that type in the population) is too low, the right choice of the uninformed

party (the hiring firm, the potential buyer, the female) might be not to accept. In other words,

the social exchange in question might not take place due to an informational problem in society.

In economic life the phenomenon can frequently be observed: in some regions, at times of natural,

political, or societal crisis, investments might not take place, because expectations on returns are,

on average, too low. Akerlof (1970) has famously referred to this as the problem of “the market

of lemons.”

In such a situation, the player whose type is uncertain naturally has an interest in making the

other player think that he is of the ‘high’ type and will try to communicate that. He will, to say

it in a more formal language, try to send a signal to the other player. However, if that signal is

of no cost, the possibility to send such a signal will not enable the involved parties to escape the
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unfortunate situation of no exchange. To see why, assume that indeed only the high type uses

this signal and that the other player, at observing the signal accepts, and in the absence of the

signal does not accept. If this were so, then the low type would also be better off using the signal,

and therefore this way of behaving cannot constitute an equilibrium. The argument is intuitive:

if talk is cheap, the player whose type is uncertain will always say “I am of the high type,” “I am

truly motivated,” “I truly want this job,” “This is a high-quality product,” etc. As Spence (1973,

p. 356) remarks: “If the incentives for veracity in reporting anything by means of a conventional

signaling code are weak, then one must look for other means by which information transfers take

place.” Spence’s fertile idea was to look at the effect of costly signals.

2.1 Class I: different costs of producing the signal

In this section, we present a parametrized family of games, which can be seen as discretized versions

of Spence’s (1973) model. The extensive form of the game is shown in the top panel of Figure 1:

There are two players, 1 and 2, and two possible states of nature, ‘high’ and ‘low,’ referring to the

types of player 1. Player 1 (the job candidate, the firm offering its shares or a product, the male)

knows the state of nature, namely if he is of the high or low (productivity, quality, or fitness) type,

but not the second player (the employer, the potential buyer, the female), who however has to take

an action that affects the payoff of both players, namely whether to accept (a) or not to accept (ā)

a certain productive exchange with player 1 (hire, buy, mate). Before player 2 takes her action,

though, player 1, no matter what his type, has the possibility to send a costly signal s, that is, to

express a certain variable of choice or trait that can be observed by the second player and that

comes with a cost for the first player. In the game tree in Figure 1, the uncertainty that player

2 faces about player 1’s type is represented by a random move of Nature at the root of the tree,

which Nature takes with probability p for the high type and 1− p for the low type. When player

2 comes to move, after having observed the costly signal s or its absence s̄, she still does not know

the realization of Nature’s random move, which is modeled by putting the two respective nodes

that player 2 cannot distinguish in the same information set (indicated by ovals in the figure),

but she can condition her choice on the observed signal. Most solution concepts in classical game

theory build on the assumption that the probabilities of player 1’s types are common knowledge.

In an evolutionary interpretation, where each player’s position is interpreted as a population of

players, the two types of player 1 represent subpopulations of the player-1 population, and p and

1 − p are their frequencies. These two interpretations, of course, do not exclude each other but

can be seen as complementary.

In the game in Figure 1, which we refer to as class I, following Spence’s original idea, it is

assumed that it is the very production, or expression, of the signal s that is of different costs for

the two types of player 1. More specifically, in our game, the payoffs of player 1’s types can be
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s̄s 1 − (1 − p)c2, p (1 − p)(1 − c2), 0 p− (1 − p)c2, 1 −(1 − p)c2, 1 − p

s̄s̄ 1, p 0, 1 − p 1, p 0, 1 − p

Figure 1: Class I: at the top, the game in extensive form; at the bottom, the normal-form repre-

sentation of that extensive-form game.

understood as the sum of two components:

(1) a background payoff, which is identical for the two types, namely 1 if the second player takes

action a, and 0 if the second player takes ā (translating the assumption that the first player

always wants to be accepted, no matter what his type), and,

(2) the cost of the signal s, which is deducted from the background payoff and which is a function

of the type: c1 for the high type, and c2 for the low type, with 0 ≤ c1 < c2.

For a game given by an extensive form such as the one in Figure 1, a pure strategy for player 1

is a plan of action of whether to send the costly signal or not, that is, take s or s̄, as a function of

his type; and a pure strategy for player 2 is a plan of action of whether to take a or ā conditional

on which signal she has observed. Each player then has four possible pure strategies.

Pure strategies for player 1: Pure strategies for player 2:

ss: If high, then s; if low, then s aa: If s, then a; if s̄, then a

ss̄: If high, then s; if low, then s̄ aā: If s, then a; if s̄, then ā

s̄s: If high, then s̄; if low, then s āa: If s, then ā; if s̄, then a

s̄s̄: If high, then s̄; if low, then s̄ āā: If s, then ā; if s̄, then ā

Players’ strategies can, of course, also be mixed, that is, in terms of a probability distribution over

their respective set of pure strategies. We write x(ss), x(ss̄), etc. for the probability attributed
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by a mixed strategy x to the pure strategies ss, ss̄, etc. And similarly for player 2, using y.

Given the sequential structure of the game, mixed strategies of the normal-form game can be

interpreted as resulting from behavior strategies, that is, plans of action giving for every node or

information set of the respective player a probability distribution over the actions that he or she

has available there. A behavior strategy for player 1, for instance, would be: “If you happen

to be of the high type, send the costly signal s with a probability of 60%, and do not send it

with the complementary probability of 40%; if you happen to be of the low type, do not send

the costly signal.” This particular behavior strategy is induced by a mixed strategy of ss̄ and s̄s̄,

with a probability of 60% on the first and 40% on the second. A behavior strategy for player 2,

for instance, would be: “If you observe the costly signal s, take a for sure; if you do not observe

it, take a with a probability of 50% (and do not take it with the complementary probability of

50%),” which is induced by a mixed strategy of aa and aā with a probability of 50% on each of

them. The two games—the one based on mixed strategies defined on complete contingent pure

strategies and the other based on behavior strategies—are, at least as what concerns the existence

of Nash equilibria, equivalent (Kuhn 1950, 1953). We denote behavior strategies as follows:

Behavior strategies for player 1: Behavior strategies for player 2:

(xh, x`): xh = prob(s | high), (y, y′): y = prob(a | s),
(xh, x`): x` = prob(s | low) (y, y′): y′ = prob(a | s̄)

A profile of behavior strategies, then, can be written in the form

(xh, x`, y, y
′).

This allows us to represent profiles of behavior strategies in the hypercube [0, 1]4, as we use it in

Figures 2, 4, 6, and 8.

2.2 Nash equilibria in the normal-form game

Under the assumption that players evaluate payoffs as expected payoffs given the probabilities of

the states of Nature, the normal form of the game, the game matrix, can be derived by considering

all 4 × 4 combinations of pure strategies and evaluating the payoffs of players at the end nodes

of the paths induced by the respective strategy combination—weighted by the probabilities with

which these end nodes will be reached, given the prior probability of the states of Nature.

The Nash equilibria of this game, obviously, depend on the specific values of the cost param-

eters, c1 and c2, and the prior p. In the following, we first isolate three paradigmatic classes of

differential signaling costs, namely, whether the cost of the signal for the low type c2 is (i) smaller,

(ii) equal to, or (iii) larger than 1. Then, within each of these classes, we make a case distinction

according to three cases of the prior probability of the high type p, namely, p < 1/2, p > 1/2,
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and p = 1/2, which, for each of the classes of differential signaling costs, exhaust all possible

equilibrium structures.

Class I.i. Costs of the signal for both types strictly below the benefit from being

accepted: 0 ≤ c1 < c2 < 1 :

• If 0 < p < 1
2 , there is:

– E1, an equilibrium in which player 1 uses a mixed strategy with a probability of p
1−p on

ss and the complementary probability on ss̄, and player 2 uses a mixed strategy with

a probability of c2 on aā and the complementary probability on āā, as well as

– P1, an equilibrium component in which player 1 takes s̄s̄, and player 2 uses a mixed

strategy with some probability in [0, c1] on aā and the complementary probability on

āā.

• If 1
2 < p < 1, there is:

– E2, an equilibrium in which player 1 uses a mixed strategy with a probability of 1− 1−p
p

on ss̄ and the complementary probability on s̄s̄, and player 2 uses a mixed strategy

with a probability of 1− c1 on aa and the complementary probability on aā,

– P2, an equilibrium component in which player 1 takes ss and player 2 uses a mixed

strategy with some probability in [0, 1− c2] on aa and the complementary probability

on aā, and

– P3, an equilibrium component in which player 1 takes s̄s̄ and player 2 any mixed

strategy between aa and āa.

• In the knife-edge case p = 1
2 , there is:

– E1’-P2, an equilibrium component in which player 1 takes ss and player 2 a mixed

strategy in the 3-dimensional polyhedron determined by y(aā) ≥ y(āa) + c2 (in other

words, a component spanned by the four vertices ss × y with y = (0, 1, 0, 0), (1 −
c2, c2, 0, 0), (0, c2, 0, 1− c2), (0, 1 + c2, 1− c2, 0)/2)), and

– P1-E2’-P3, an equilibrium component in which player 1 takes s̄s̄ and player 2 a mixed

strategy in the triangular frustum, determined by y(aā) ≤ y(āa) + c1 (in other words,

the convex hull of the six vertices s̄s̄ × y with y = (1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) at

the base and y = (1− c1, c1, 0, 0), (0, c1, 0, 1− c1), (0, 1 + c1, 1− c1, 0)/2 at the top).

Class I.ii. Cost of the signal for the low type equal to the benefit of being accepted:

0 ≤ c1 < c2 = 1 : Nash equilibria in the normal form are as class I.i, only with the following

substitutions:
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• For 0 < p < 1
2 : E1 is replaced by E*-E1, an equilibrium component in which player 1 mixes

between ss and ss̄ with some probability in [0, p/(1− p)] on ss and player 2 takes aā.

• For 1
2 ≤ p < 1: P2 and E1’-P2 are replaced by E*-E1’-P2, an equilibrium component in

which player 1 takes any mix between ss and ss̄ and player 2 takes aā.

Class I.iii. Cost of the signal for the low type higher than the benefit of being

accepted: 0 ≤ c1 < 1 < c2 : Nash equilibria in the normal form are as in class I.i, only that E1,

P2, and E1’-P2 are replaced by E*, a fully revealing equilibrium in which player 1 takes ss̄, and

player 2 takes aā.

These Nash equilibria can easily be verified by the use of the game matrix.

2.3 Sequential Bayesian Nash equilibria in the extensive form

For many applications, reasoning about the game in the extensive form, in terms of behavior

strategies, is the more intuitive approach. This is the theoretical framework in which signaling

games are usually discussed in classical game theory, and it also underlies our study of the dynamics

on the central invariant manifold. We, therefore, include a discussion of the sequential Bayesian

Nash equilibria in the extensive form of the game.

For a game in extensive form, a sequential Bayesian Nash equilibrium (Kreps and Wilson 1982)

is a profile of behavior strategies together with a vector of beliefs (a probability distribution over

the states of Nature, one for every information set) such that:

(1) players’ choices of actions at information sets where they potentially come to move are a

best response to the other players’ actions (as given by their behavior strategies) from that

information set onward, given the beliefs over the states of the nature assigned to that

information set, and

(2) the beliefs assigned to information sets are, on the one hand, compatible with Bayes’ law

along the path being played (given the prior probability distribution p over the states of nature

and players’ equilibrium strategies), and, on the other hand, ‘consistent’ off the path being

played, in the sense that they can be deduced from Bayes’ law after a small perturbation of

the behavior strategies.

It is easy to verify that for signaling games as we consider them here, the condition that ‘off

the equilibrium path’ beliefs be consistent is always fulfilled: Let (p, 1 − p) be the initial prior

for (high, low). Suppose that in equilibrium a specific signal is never sent and let (p∗, 1 − p∗) be

player 2’s belief off the equilibrium path when she was to receive that signal. Suppose that player
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1 perturbs his behavior strategies as follows: the high type sends the signal that in the original

equilibrium is never used with probability ε(1−p)p∗, where ε is very small, and the low type sends

this signal with probability εp(1− p∗). By Bayes’ law, the updated belief is (p∗, 1− p∗).
For the game in Figure 1, each of the Nash equilibria in the normal-form game has indeed a

translation into behavior strategies that constitutes a sequential Bayesian Nash equilibrium, which

is shown in the following.

Class I.i: 0 ≤ c1 < c2 < 1

• For the case 0 < p < 1
2 :

– E1 translates to (1, p
1−p , c2, 0): the high type uses s for sure, while the low type uses it

with probability x` = p
1−p ; player 2, in case that s is observed, takes a with probability

y = c2, and in case that it is not observed, does not take a. It is straightforward to

verify that this profile of behavior strategies constitutes a sequential Bayesian Nash

equilibrium: Given that the high type uses s, the probability with which the low type

uses s is precisely such that at the observation of s, player 2’s Bayesian updated belief

is 1/2:

p(h | s) =
p

p+ (1− p) · x`
=

1

2
⇐⇒ x` =

p

1− p .

At this belief, player 2 is indifferent between a and ā and therefore ready to mix between

the two. If s is not observed, player 2’s updated probability of the high type will be 0,

and to this belief, there is a unique best response: not to accept. These choices of player

2 are precisely such as to make player 1’s low type indifferent between s and s̄, which

is needed to make him willing to use a mix between these two strategies, and the high

type strictly better off using s. In E1, the absence of the costly signal fully reveals the

low type, while the presence of the costly signal s pushes player 2’s belief that player 1

is of high type up to 1/2. We therefore characterize E1 as partially revealing/partially

pooling in s. It is what in the literature in theoretical biology is often referred to as a

‘hybrid’ equilibrium. Figure 2 shows E1 in the hypercube: it is an isolated equilibrium

that sits in the 2-dimensional face given by (1, ∗, ∗, 0).

– P1 translates to (0, 0, y, 0), y ∈ [0, c1]: player 1 never uses s, no matter what his type;

player 2, in the counterfactual event that s is observed, takes a with a probability

not higher than c1, and when s is not observed, does not take a. Every point in

this equilibrium component maps to the same equilibrium outcome, that is, probability

distribution over end nodes of the game tree. It is straightforward to check that any

point in P1 can be sustained as a sequential Bayesian Nash equilibrium: After s̄, given

13



that both of player 1’s types use it, the updated belief is equal to the prior, p < 1/2, and

therefore player 2 has to choose ā. In the counterfactual event that player 2 observes

s, a situation ‘off the equilibrium path,’ Bayes’ law is not defined and hence imposes

no restrictions. To make player 2’s choice of taking a with a probability y ∈ [0, c1]

compatible with sequential Bayesian Nash equilibrium, it therefore suffices to find some

belief to which this is a best response, and there are many such beliefs: for any belief on

the high type strictly smaller than 1/2, player 2’s best response will be to take a with 0

probability. If the belief is equal to 1/2, then player 2 will be indifferent between a and

ā, and hence taking a with some y ∈ [0, c1] is a best response. Equilibria of this form,

in which all types use the same signal, are often referred to as pooling equilibria. Hence

the symbol: P1. Figure 2 shows the position of P1 in the space of behavior strategies:

it reaches from (0, 0, 0, 0) to (0, 0, c1, 0), marked by -P1 in the figure.

• For the case 1
2 < p < 1:

– E2 translates to (1− 1−p
p , 0, 1, 1− c1), a equilibrium that is partially revealing/partially

pooling in s̄: the high type uses s with probability xh = 1 − 1−p
p , while the low type

never uses it, which is such that player 2 in the absence of s will have an updated belief

that will make her indifferent between a and ā:

p(h | s̄) =
p · (1− xh)

p · (1− xh) + (1− p) =
1

2
⇔ 1− xh =

1− p
p

.

Player 2, if she observes s, will choose a for sure (which will be the best response to

her updated belief, which is equal to 1), and if she does not observe it, will choose a

with probability y′ = 1 − c1, which is the probability that will make player 1’s high

type indifferent between using and not using s, while ensuring that not using s is a best

response for player 1’s low type. Here the costly signal s fully reveals the high type,

while the absence of the costly signal (s̄) brings player 2’s belief down to 1/2.

– P2 translates to (1, 1, 1, y′), y′ ∈ [0, 1 − c2]: both types of player 1 use s (‘pooling’ in

s); player 2, when s is observed, will have the same belief as the prior, p > 1/2, and

will therefore take a, and in the absence of s, which will be ‘off the equilibrium path,’

either believes that player 1 is of the high type with a probability of less than 1/2, in

which case she will choose ā, or believes that 1 is of the high type with a probability

of 1/2 and will choose a with a probability y′ ∈ [0, 1− c2], which will be low enough to

prevent player 1’s low type, and a fortiori player 1’s high type, from deviating from s.

– P3 translates to (0, 0, y, 1), y ∈ [0, 1]: player 1 never uses s, no matter what his type

(‘pooling’ in s̄); player 2, in the absence of s, will have the same belief as the prior,
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p > 1/2, and hence will choose a, and in the counterfactual event that s is observed

can have any belief and best respond to it.

Figure 4 shows E2, P2, and P3 in the hypercube.

• For the knife-edge case p = 1
2 :

– E1’-P2 translates to (1, 1, y, y′), y ∈ [c2, 1], y′ ∈ [0, y − c2]: a 2-dimensional set of

behavior strategies, an isosceles right triangle, spanned by (1, 1, 1, 0), -P2= (1, 1, 1, 1−
c2), and E1’ = (1, 1, c2, 0) (see Figure 6). That is, a continuum of equilibrium outcomes,

in which player 1 always uses s, no matter what his type (‘pooling’ in s), and player

2, when she observes s, will have the same belief as the prior 1/2, at which she is

indifferent between a and ā, and will take a with some probability y ∈ [c2, 1], and

in response to the off-the-equilibrium-path signal s̄ will take a with some probability

y′ ∈ [0, y−c2], which guarantees that both types of player 1 have no incentive to deviate

from s. In particular, when y = c2, then y′ = 0 (similarly as in E1); and when y = 1,

then y′ ∈ [0, 1− c2] (as in P2).

– P1-E2’-P3 translates to (0, 0, y, y′), y ∈ [0, y′+c1], if y′+c1 ≤ 1, y ∈ [0, 1] if y′+c1 > 1;

y′ ∈ [0, 1]: a 2-dimensional set of behavior strategies spanned by (1, 0, 0, 0), -P1=

(0, 0, c1, 0), and E2’ = (0, 0, 1, 1− c1), (0, 0, 1, 1), and (0, 0, 0, 1) (see Figure 6). That is,

a continuum of equilibrium outcomes, in which player 1 never uses s, no matter what

his type (‘pooling’ in s̄), and player 2, in the absence of s, will have the same belief

as the prior 1/2 and will take a with some probability y′ ∈ [0, 1], and in response to

the off-the-equilibrium-path signal s will take a with some probability y ∈ [0, y′ + c1]

if y′ + c1 ≤ 1 and with some probability y ∈ [0, 1] if y′ + c1 > 1. In particular, y′ = 0

is supported by any y ∈ [0, c1] (as in P1); y′ = 1− c1 by any y ∈ [0, 1] (similarly as in

E2); and y′ = 1 by any y ∈ [0, 1] (as in P3).

Figure 6 shows E1’-P2 and P1-E2’-P3 in the hypercube.

Class I.ii: 0 ≤ c1 < c2 = 1

• For 0 < p < 1
2 , E*-E1 translates to (1, x`, 1, 0), x` ∈ [0, p

1−p ], a continuum of equilibrium

outcomes reaching from a fully revealing equilibrium E*, in which the high type always and

the low type never uses s (x` = 0), to an equilibrium that is partially revealing/partially

pooling in s like E1 (x` = p/(1−p))). In any equilibrium belonging to this continuum, player

1’s high type uses s and player 1’s low type uses it with some probability x`, sufficiently low

(possibly 0), such that if player 2 observes s, her updated belief will guarantee that choosing
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a is a best response, which will be the case if:

p(h | s) =
p

p+ (1− p) · x`
≥ 1

2
⇐⇒ 0 ≤ x` ≤

p

1− p .

The absence of the costly signal (s̄) fully reveals the low type, and hence player 2’s best

response is unique: ā. Given player 2’s behavior strategy, player 1’s high type is strictly

better off using s, and the low type is indifferent between s and s̄.

• For 1
2 ≤ p < 1, E*-E1’-P2 translates to (1, x`, 1, 0), x` ∈ [0, 1], a continuum of equilibrium

outcomes reaching from the fully revealing equilibrium E* (x` = 0), over partially reveal-

ing/partially pooling equilibria similar to E1, to an equilibrium in the style of P2, in which

both types use s (x` = 1). In any equilibrium belonging to this continuum, after s, player 2’s

updated belief is strictly above 1/2: taking a therefore is the best response. For any x` < 1,

s̄ fully reveals the low type, and therefore ā is the unique best response to s̄. When x` = 1

(P2), the updated belief after s will be the same as the prior, and because this is above 1/2,

taking a will be the unique best response. Any belief that puts a probability of at least 1/2

on player 1’s low type after s̄ supports this equilibrium.

Class I.iii: 0 ≤ c1 < 1 < c2

• E*, which exists under any prior, translates to (1, 0, 1, 0), a fully revealing or, as is also said,

‘honest’ signaling equilibrium, in which the high type uses s and the low type s̄, and player

2 in reaction to s takes a and in reaction to s̄ takes ā. The Bayesian update is trivial here:

observation of s sets the belief equal to 1; the absence of s sets the belief to 0.

Tables 1, 2, and 3 give an overview of the equilibrium structure for each of the subclasses I.i,

I.ii, and I.iii, for each of the three cases concerning the prior p. Figure 8 shows the equilibrium

components in the hypercube for all nine cases.
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Table 1. Equilibrium structure for class I.i: 0 ≤ c1 < c2 < 1

Prior Equilibrium component Index Rep. BR NWBR, Intuitive Payoffs:

dynam. dynam. ‘divinity’

p < 1
2

(E1): partially revealing/ +1 stable as. stable yes yes h : c2 − c1

partially pooling in s: ` : 0

(1, p
1−p

, c2, 0) 2 : 1− p

(P1): pooling in s̄: −0 unstable unstable no yes h: 0

(0, 0, y, 0), y ∈ [0, c1] `: 0

2 : 1− p

p > 1
2

(E2): partially revealing/ −1 unstable unstable yes yes h: 1− c1

partially pooling in s̄: `: 1− c1

(1− 1−p
p

, 0, 1, 1− c1) 2 : p

(P2): pooling in s: +1 stable as. stable yes yes h: 1− c1

(1, 1, 1, y′), y′ ∈ [0, 1− c2] `: 1− c2

2 : p

(P3): pooling in s̄: +1 as. stable as. stable yes yes h: 1

(0, 0, y, 1), y ∈ [0, 1] `: 1

2 : p

p = 1
2

(E1’-P2): pooling in s: +1 stable as. stable yes yes h: [c2−c1, 1−c1]

(1, 1, y, y′), y ∈ [c2, 1], `: [0, 1− c2]

y′ ∈ [0, y − c2]) 2 : 1
2

(P1-E2’-P3): pooling in s̄: −0 unstable unstable only when only when h: [0, 1]

(0, 0, y, y′), (y, y′) ∈ [0, 1]2 y′ ∈ [1−c1, 1] y′ ∈ [0, 1−c2] or `: [0, 1]

y ≤ y′ + c1 y′ ∈ [1− c1, 1] 2 : 1
2
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Table 2. Equilibrium structure for class I.ii: 0 ≤ c1 < c2 = 1

Prior Equilibrium component Index Rep. BR NWBR, Intuitive Payoffs:

dynam. dynam. ‘divinity’

p < 1
2

(E*-E1): fully to partially +1 stable as. stable yes yes h: 1− c1

revealing/partially pool. in `: 0

s: (1, x`, 1, 0), x` ∈ [0, p
1−p

] 2 : [1− p, 1]

(P1): pooling in s̄: −0 unstable unstable no yes h: 0

(0, 0, y, 0), y ∈ [0, c1] `: 0

2 : 1− p

p > 1
2

(E2): partially revealing/ −1 unstable unstable yes yes h: 1− c1

partially pooling in s̄: `: 1− c1

(1− 1−p
p

, 0, 1, 1− c1) 2 : p

(E*-E1-P2): fully revealing +1 stable as. stable yes yes h: 1− c1

to pooling in s: `: 0

(1, x`, 1, 0), x` ∈ [0, 1]

2 : [p, 1]

(P3): pooling in s̄: +1 as. stable as. stable yes yes h: 1

(0, 0, y, 1), y ∈ [0, 1] `: 1

2 : p

p = 1
2

(E*-E1-P2): fully revealing +1 stable as. stable yes yes h: 1− c1

to pooling in s: `: 0

(1, x`, 1, 0), x` ∈ [0, 1] 2 : [ 1
2
, 1]

(P1-E2’-P3): pooling in s̄: −0 unstable unstable only when only when h: [0, 1]

(0, 0, y, y′), (y, y′) ∈ [0, 1]2 y′ ∈ [1−c1, 1] y′ ∈ [0, 1−c2] or `: [0, 1]

y ≤ y′ + c1 y′ ∈ [1− c1, 1] 2 : 1
2
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Table 3. Equilibrium structure for class I.iii: 0 ≤ c1 < 1 < c2

Prior Equilibrium component Index Rep. BR NWBR, Intuitive Payoffs:

dynam. dynam. ‘divinity’

p < 1
2

E*: fully revealing: +1 as. stable as. stable yes yes h: 1− c1

(1, 0, 1, 0) `: 0

2 : 1

P1: pooling in s̄: −0 unstable unstable no no h: 0

(0, 0, y, 0), y ∈ [0, c1] `: 0

2 : 1− p

p > 1
2

E2: partially revealing/ −1 unstable unstable yes yes h: 1− c1

partially pooling in s̄: `: 1− c1

(1− 1−p
p

, 0, 1, 1− c1) 2 : p

E*: fully revealing: +1 as. stable as. stable yes yes h: 1− c1

(1, 0, 1, 0) `: 0

2 : 1

P3: pooling in s̄: +1 as. stable as. stable yes yes h: 1

(0, 0, y, 1), y ∈ [0, 1] `: 1

2 : p

p = 1
2

E*: fully revealing: +1 as. stable as. stable yes yes h: 1− c1

(1, 0, 1, 0) `: 0

2 : 1

(P1-E2’-P3): pooling in s̄: −0 unstable unstable only when only when h: [0, 1]

(0, 0, y, y′), (y, y′) ∈ [0, 1]2 y′ ∈ [1−c1, 1] y′ ∈ [0, 1−c2] or `: [0, 1]

y ≤ y′ + c1 y′ ∈ [1− c1, 1] 2 : 1
2

2.4 Qualitative properties of the equilibrium structure

This case distinction allows us to expose critical structural properties of the model:

• First, with respect to the existence of the fully revealing, ‘honest,’ equilibrium E*:

– Whether E* exists or not depends on the cost of the signal for the low type: for E* to

exist, the cost of the signal for the low type has to be at least as high as the benefit

that he gets if player 2 accepts, that is, c2 ≥ 1 (subclasses ii and iii). This reflects

a condition for continuous games, which in the economics literature is known as the

single-crossing property (see, for example, Kreps and Sobel 1994). In the literature in
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theoretical biology, this observation has sometimes been expressed by saying that it is

the ‘cost of cheating’ that sustains honest communication (see, for instance, Számadó

2011).

– When the cost parameters are such that E* exists (c2 ≥ 1), then it exists for any prior

p on the high type (whereas the existence of other equilibria depends on the prior).

– But, no matter what the prior p on the high type, E* is never the unique equilibrium.

Whenever it exists, there are also other equilibria, notably equilibrium components

in which nobody expresses the costly signal and the second player acts on her prior

belief (which, depending on the prior, makes her accept or not accept): no-signaling

equilibria, as one might say.

– The fully revealing equilibrium E* and the partially revealing equilibrium E1 represent

the same equilibrium component in different games belonging to the same family of

games generated by varying the cost of the signal for the low type, c2. Whenever E*

and E1 co-exist in the same game (which in our family of discrete games is only the

case when c2 = 1, subclass ii), they belong to the same equilibrium component.

• What kind of equilibria exist—or, more precisely, co-exist—in our classes of games depends

also on the prior p on the high type. This parameter does not regulate the existence of fully

revealing versus partially revealing equilibria but ‘what a signal means’—if by the ‘meaning’

of a signal we understand what it ‘does’: what is its effect on the belief over the states of

Nature (here the types of player 1) and hence what it makes player 2 do.1 Focusing on the

two generic cases for p, we can observe the following:

– When the prior is below the critical value, p < 1/2, the costly signal s, if it is used in

equilibrium, has the function to ‘push up’ the belief of player 2 to the critical value

p = 1/2 and make her indifferent between accepting and not accepting (E1), or beyond,

possibly to 1, making player 2 accept (equilibria in E1-E* different from E1 and E*),

depending on the case of c2; while the absence of the signal s̄, if it occurs in equilibrium,

always makes that player 2 will not accept (no matter which of the two co-existing equi-

librium components, E1, respectively E1-E* or E*, or the no-signaling-no-acceptance

P1 prevails).

– When the prior is above the critical value, p > 1/2, the costly signal, whenever it is

used in equilibrium, has the function to keep the prior above the critical value (P2) or

to push it even higher, possibly up to 1 (equilibria in E*-E1-P2 different from P2 and

E* as well as E2) and therefore make player 2 accept. The meaning of the absence of

1“The meaning of a word is its use in the language,” Wittgenstein famously writes in §43 of Philosophical

Investigations.
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the costly signal in this case, however, critically depends on which of the co-existing

equilibrium outcomes prevails: in E2, it lowers the belief of player 2 to the critical

value p = 1/2 and hence makes player 2 indifferent between accepting or nor not; in

E* respectively equilibria in E*-E1-P2 different from P2, it makes the belief drop to 0

and hence makes player 2 not accept; in P3 it leaves the prior belief, which is already

above 1/2, unchanged and hence makes player 2 accept.

• In terms of the welfare properties of equilibria, focusing again on the two generic cases of

the prior p, we can make the following observations (see the payoffs in the last column of

Tables 1,2, and 3):

– When the prior probability on the high type is below the critical value, p < 1/2, no

matter whether the cost of the signal for the low type c2 is below, equal to, or larger

than 1 (i–iiii), the equilibrium component in which the costly signal is at least partially

informative, namely, E1 respectively E*-E1 or E*, is better, in the sense of Pareto,

than the co-existing ‘no-signaling’ equilibrium component P1, in which none of player

1’s types uses the costly signal and player 2 does not accept: In an equilibrium of the

form E1, relative to P1, nobody is made worse off and at least someone, namely, the

high type of player 1, is made strictly better off; in an equilibrium in the component

E*-E1, different from E1, respectively in E*, player 2 is also made better off relative to

P1. In other words, when the prior on the high type is relatively low, the possibility

to use a costly signal has the potential to increase social well-being over a situation in

which such a costly signal is not available.

– When the prior probability on the high type is above the critical value, p > 1/2, then

payoff comparisons between co-existing equilibria depend on the cost of the signal for the

low type: When c2 < 1 (subclass i, Table 1), the equilibrium component P3, in which

none of player 1’s types uses the costly signal and player 2 accepts, Pareto dominates

the two other equilibrium components E2 and P2 (both types of player 1 strictly prefer

P3 over P2 and E2, while player 2 is indifferent between all three equilibrium outcomes).

The possibility to use a costly signal can result in a social tragedy here, namely when

players, get caught in the suboptimal equilibrium outcome P2, in which everybody is

forced to express the costly signal—because everybody thinks that otherwise player 2

were not to accept—which in the end has the effect that the costly signal does not carry

any information regarding the types of player 1.

When c2 is equal to or larger than 1 (subclasses ii and iii, Tables 2 and 3), the co-

existing equilibrium components are no longer guaranteed to be rankable according to

the Pareto criterion: player 2 prefers outcomes in the component E*-E1’-P2 respectively
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E* over E2 and P3 (for outcomes in E*-E1’-P2 different from P2 and E* this preference

is even strict), of course, because player 2 has an interest in receiving information that

allows him to discriminate between player 1’s types; while both types of player 1 strictly

prefer P3, in which they do not need to send the costly signal and player 2 still accepts,

over E2 and E*-E1’-P2 respectively E*. In other words, there is a potential conflict of

interest between player 1 and player 2 over the co-existing equilibrium outcomes.

These observations will be of varying interest depending on the specific application at hand.

But no matter what the application, it is important to have an image of the whole range of

possible equilibrium constellations to understand which phenomena can possibly be explained by

costly-signaling theory.

Faced with the multiplicity of equilibria for every fixed set of parameters, in view of the

explanatory potential of the theory, one certainly would like to understand whether some equilibria

are maybe ‘better’ predictions of the model than others. We now turn to the study of evolutionary

dynamics to test for the robustness—and hence plausibility—of equilibria in these games.

3 Evolutionary dynamics

In an evolutionary context, Nash equilibria are interpreted as equilibria in a population of players.

Games with two players are understood as models of interaction between two different populations,

for instance, male and female or predator and prey, with each player position representing a

population of individuals. If a player can be of two different types, these represent subpopulations

of the respective population with the frequencies given by the prior probability distribution of

types. A state of the two-population system corresponds to a distribution of strategies for each of

the player positions.

For an equilibrium to be a good prediction of the model from an evolutionary point of view,

the corresponding state of the system has to be resistant to evolutionary shocks, that is, random

drift among strategies already present in the population and newly appearing variation in the form

of mutant strategies.

Theorists have approached the question of evolutionary stability on three different levels:

(1) ‘static’ criteria, such as, most prominently, Maynard Smith and Price’s (1973) notion of

evolutionarily stable strategy (ESS), which relies on payoff comparisons between mutant and

resident strategies,

(2) the study of specific evolutionary dynamics defined on the respective game—a research

program that has aimed at establishing relations between static ESS criteria and stability
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properties of the associated fixed point under specific dynamics (Taylor and Jonker 1978,

Hofbauer et al. 1979, Hofbauer and Sigmund 1988, 1998), and

(3) qualitative dynamic stability properties of equilibria under a wider range of dynamic pro-

cesses based on topological properties of the respective equilibrium component, an approach

related to index theory.

We first turn to this last approach as it has the additional advantage of providing a complete

system of classification. Then we study in more detail the replicator dynamics and the best-

response dynamics for our classes of games.

3.1 The index of equilibria: a necessary condition for evolutionary sta-

bility

Already Shapley (1974), in his description of the Lemke-Howson algorithm, associated an index

(+1 or −1) to each regular equilibrium (in a 2-person game, an equilibrium is regular if and only

if it is isolated and quasistrict, that is, unused strategies do strictly worse) with the following

properties:

(1) Every strict equilibrium has index +1.

(2) Removing or adding unused strategies does not change the index of a regular equilibrium.

(3) The sum of the indices of all equilibria, if they are all regular, is 1. This is often referred to

as the index theorem, which implies the odd number theorem: In generic games, the number

of equilibria is odd.

Von Stengel (2021) gives a modern exposition of this approach.

An alternative approach to the index based on the replicator dynamics and Brouwer’s degree

theory is given by Hofbauer and Sigmund (1988, 1998). Here the index of a regular equilibrium is

the sign of the determinant of the negative Jacobian matrix of the replicator dynamics evaluated

at this equilibrium. Ritzberger (1994, 2002) has extended this approach and defines the index of

components of Nash equilibria. Recall that in a finite game (finitely many players, each mixing

among finitely many pure strategies), the set of Nash equilibria is semialgebraic, and hence consists

of finitely many connected components. An index (which can now be an arbitrary integer) can

be associated with any of these components, such that the sum over all components is again +1.

This index is robust against payoff perturbations, in the following sense: Let C be a component

and U an open neighborhood of C such that all equilibria in the closure of U are already in C. A

perturbation of the payoffs will in general change C. Now, let Cε be the set of all equilibria of the

perturbed game that lie in U (we assume that the perturbation is small enough so that again no
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perturbed equilibrium lies on the boundary of U). The set Cε need not be connected, but it is the

finite union of connected components Cε
1 , . . . , C

ε
k. Brouwer’s degree theory then implies that the

sum of the indices of Cε
1 , . . . , C

ε
k equals the index of C. It might happen that Cε is empty—but

only if C has index 0. Using these simple properties, one can easily compute the index of any

Nash equilibrium component.

For practical matters, there are three efficient ways of determining the index of an equilibrium

component or a degenerate, that is, nonregular, equilibrium:

(a) Perturb the game so that all perturbed equilibria are regular: the index of an equilibrium

component of the original game is then the sum of the indices of the corresponding nearby

equilibria in the perturbed game—the robustness property of the index.

(b) Use the index theorem (if the indices of all other components are known). And finally:

(c) If an equilibrium component C is asymptotically stable for some evolutionary dynamics,

then its index equals its Euler characteristic.

The last property, which is of particular interest here because it establishes the connection to

evolutionary dynamics, is given by a beautiful theorem by Demichelis and Ritzberger (2003). For

an extension to differential inclusions (like the best-response dynamics) see Demichelis and Sorin

(2008). An important special case is: If an equilibrium component is convex and asymptotically

stable under some evolutionary dynamics, then its index is +1.

For our game, in class I.i, 0 ≤ c1 < c2 < 1, we get the following characterization of equilibria in

terms of the index:

• When 0 < p < 1
2 , the partially revealing/partially pooling equilibrium E1 is an isolated and

quasistrict—hence regular—equilibrium in which both players mix between two strategies.

Omitting the strategies that are unused at this equilibrium leads to a cyclic 2 × 2 game,

similar to a matching-pennies game. E1 is the only equilibrium in this restricted game. By

the index theorem, then, its index is +1. Therefore, in the full (4× 4) game, in turn by the

index theorem, the only other component P1 must have index 0.

• At p = 1
2 , there are still two components, E1’-P2 and P1-E2’-P3. By the robustness property

of the index, E1’-P2 has index +1: in any perturbed game that comes to lie in the case

p < 1/2, E1 corresponds to the component E1’-P2, which implies that the two have the

same index. By the index theorem, the component P1-E2’-P3 then has index 0. (Note that

P1-E2’-P3 has index 0 also by robustness of the index: in any perturbed game that comes

to lie in the case p < 1/2, P1 corresponds to the component P1-E2’-P3 and they, therefore,

have to have the same index.)
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• When 1
2 < p < 1, there are three components: By robustness, P2 (which corresponds to

the component E1’-P2) has index +1. The partially revealing/partially pooling equilibrium

E2 is isolated and quasistrict—hence regular—and both players mix between two strategies.

If we discard the unused strategies, the 2 × 2 restricted game is a coordination game, with

two strict equilibria, and E2. Since strict equilibria have index +1, E2 has index −1. As

a consequence, in the full game, by the index theorem, the third component, P3, has index

+1.

In other words, as p increases through the critical value 1
2 , the equilibrium component P1 splits

into the two components E2 and P3. As required by the robustness property of the index, the

index of the component P1-E2’-P3 (0) is, on the one hand, the same as that of P1 and, on the

other hand, the same as the sum of the indices of E2 and P3. Table 1 summarizes these results. It

follows from these results, by Demichelis and Ritzberger’s theorem, that P1, E2, and P1-E2’-P3

cannot be asymptotically stable for any reasonable dynamics, while E1, P2, and P3, and E1’-P2

are candidates for asymptotic stability, at least for some evolutionary dynamics.

Due to the robustness property of the index, with the appropriate substitutions, these results

extend to the two other subclasses: for class I.ii (c2 = 1), E1 ‘turns into’ E*-E1, and P2 and E1’-P2

‘turn into’ E*-E1’-P2; for class I.iii (c2 > 1), E1, P2, and E1’-P2 ‘turn into’ E* (see Section 2.2).

Certainly this has to be so, because varying the cost parameters means to perturb the payoffs,

to look at games ‘nearby,’ and what defines the index is precisely that it is robust under such

perturbations. Tables 2 and 3 cover these cases.

Looking at the index of equilibrium components across all three subclasses (Tables 1, 2, and

3), note in particular that the fully revealing equilibrium E* always sits in a component with index

+1. And, curiously, equilibrium components with an index different from +1 are those that do

not change across all three subclasses (variations of the c2 parameter).

3.2 Replicator dynamics for the game in normal form

In general, the replicator dynamics for a two-population game is given by:

ẋi = xi(u
1
i − ū1), i = 1, . . . n1,

ẏj = yj(u
2
j − ū2), j = 1, . . . n2,

(1)

where uki is the payoff of player k playing strategy i, and ūk the average payoff of player k.

For our game, with the notation y = (y(aa), y(aā), y(āa), y(āā)), y = y(aa) + y(aā), y′ =

y(aa) + y(āa), we can write the payoffs for player 1 against a mixed strategy y of player 2 as
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follows:

u1
1 = u1(ss,y) = y − pc1 − (1− p)c2,

u1
2 = u1(ss̄,y) = p(y − c1) + (1− p)y′,

u1
3 = u1(s̄s,y) = (1− p)(y − c2) + py′,

u1
4 = u1(s̄s̄,y) = y′.

(2)

Note that:

u1(ss) + u1(s̄s̄) = u1(ss̄) + u1(s̄s). (3)

Similarly, with x = (x(ss), x(ss̄), x(s̄s), x(s̄s̄)), xh = x(ss) +x(ss̄), and x` = x(ss) +x(s̄s), we can

express the payoffs for player 2 against a mixed strategy x of player 1 as:

u2
1 = u2(aa,x) = p,

u2
2 = u2(aā,x) = pxh + (1− p)(1− x`),

u2
3 = u2(āa,x) = p(1− xh) + (1− p)x`,

u2
4 = u2(āā,x) = 1− p,

(4)

and

u2(aa) + u2(āā) = u2(aā) + u2(āa). (5)

We point out that (3) and (5) hold for any normal-form game derived from a game tree as given

in Figure 1 (for any specification of payoffs at the end nodes of the tree). These special features

allow us to reduce the replicator dynamics to a smaller dimension.

Lemma 1. Let

ẋi = xi(ui − ū), i = 1, . . . 4 (6)

be the replicator equations for a population whose payoff function u : ∆4 → R4 satisfies u1 + u4 =

u2 + u3. Then x1x4

x2x3
is a constant of motion for (6). The invariant manifold x1x4 = x2x3 can be

parameterized by x1 = xx′, x2 = x(1− x′), x3 = (1− x)x′, x4 = (1− x)(1− x′) with (x, x′) ∈ [0, 1]2

where conversely, x = x1 + x2, x
′ = x1 + x3. On this invariant manifold, (6) can be written as

ẋ = x(1− x)(u1 − u3)

ẋ′ = x′(1− x′)(u1 − u2)
(7)

Proof. Applying the quotient rule to (6) yields:(
x1x4

x2x3

)·

=

(
x1x4

x2x3

)
(u1 + u4 − u2 − u3) = 0. (8)

By x1x4 = x2x3 one obtains (7) (similarly as in Gaunersdorfer, Hofbauer, and Sigmund 1991, and

Cressman 2003).
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Proposition 1. [Foliation of the replicator dynamics.] For the normal-form game in Figure 1:

x(ss)x(s̄s̄)
x(ss̄)x(s̄s) and y(aa)y(āā)

y(aā)y(āa) are constants of motion for the replicator dynamics (1), which is to say

that the 6-dimensional state space ∆4×∆4 is foliated into a two-parameter family of 4-dimensional

invariant manifolds. On the ‘central’ invariant manifold, given by

x(ss)x(s̄s̄) = x(ss̄)x(s̄s), y(aa)y(āā) = y(aā)y(āa), (9)

which is sometimes called the Wright manifold (see, for example, Cressman 2003), the replicator

dynamics simplifies to:

ẋh = xh(1− xh)(y − c1 − y′)p,

ẋ` = x`(1− x`)[y − c2 − y′](1− p),

ẏ = y(1− y)[pxh − (1− p)x`],

ẏ′ = y′(1− y′)[p(1− xh)− (1− p)(1− x`)],

(10)

with the state space of this system the hypercube [0, 1]4.

Proof. By Lemma 1 and equations (3) and (5). Equation (10) results from inserting (2) and (4)

into (7).

3.3 Replicator dynamics for behavior strategies

Proposition 2. The system of differential equations (10) on the hypercube [0, 1]4 can be derived

directly from the extensive form, as the replicator dynamics for behavior strategies.

Proof. For this purpose, we interpret xh = prob(s|high), x` = prob(s|low), y = prob(a|s), and

y′ = prob(a|s̄). Recall that in a binary choice game, with alternatives A and B, and frequencies

x and 1− x, the replicator dynamics reads ẋ = x(1− x)[u(A)− u(B)]. When we apply this to the

4-player game defined by the extensive-form game in Figure 1, this leads to (10). The factors p

and 1− p in the first two equations come from the probabilities of Nature’s draw.

In other words: the system of differential equations (10) is the replicator equation for a binary

4-person game with linear incentives, with the hypercube [0, 1]4 as state space. In the following,

we analyze this dynamics for each of the three subclasses concerning the cost parameters and,

within each of these, the three relevant cases regarding p.

Class I.i: 0 ≤ c1 < c2 < 1

0 < p < 1
2 : All 24 corners of the hypercube as well as the Nash equilibrium E1 = (1, p

1−p , c2, 0),

and the edges (0, 0, ∗, 0), which includes the Nash-equilibrium component P1, (0, 0, ∗, 1), (1, 1, 0, ∗),
and (1, 1, 1, ∗) are rest points of (10).
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Proposition 3. [Replicator dynamics near E1.] For the replicator dynamics (10) on the hypercube

[0, 1]4, E1 is Lyapunov stable. More precisely, it is surrounded by closed orbits in its supporting

boundary face (1, ∗, ∗, 0) (lower front square in Figure 2; lower right square in Figure 3), and

there is an open neighborhood of E1 in [0, 1]4 from where the orbits converge to the boundary

face (1, ∗, ∗, 0), approaching one of the periodic solutions near E1. Every periodic solution in the

face (1, ∗, ∗, 0) attracts a three-dimensional manifold of nearby orbits. However, the closed face

(1, ∗, ∗, 0) is not stable, due to the orbit on the edge from (1, 0, 0, 0) to (0, 0, 0, 0), see Figure 2 or

Figure 3.

Proof. In the supporting boundary face of E1, (1, ∗, ∗, 0), which in Figure 2 corresponds to the

lower front square, we have:

ẋ` = x`(1− x`)[y − c2](1− p),

ẏ = y(1− y)[p− (1− p)x`],
(11)

which is the replicator dynamics for a cyclic 2×2 game, with closed orbits around the equilibrium

E1 (see Figure 3, lower right square). Linearization at E1 in direction of the missing strategies

gives

ẋh = (1− xh)(c2 − c1)p, ẏ′ = y′(2p− 1). (12)

Hence E1 is a quasistrict Nash equilibrium, and it has a two-dimensional stable manifold, which

intersects the open hypercube (0, 1)4 in a quarter ‘plane’ consisting of all interior orbits converging

to E1. Moreover, there is an open neighborhood of E1 in [0, 1]4 from where the orbits converge to

the boundary face (1, ∗, ∗, 0), approaching one of the periodic solutions near E1. This follows from

center manifold theory and the reduction principle (see, e.g., Kuznetsov 2004, chapter 5.1): The

two-dimensional boundary face (1, ∗, ∗, 0) is the center manifold at the equilibrium E1. Hence, by

Kuznetsov (2004, Theorem 5.2), the flow near E1 is locally topologically equivalent to the partially

linearized flow of (11) together with (12). In particular, E1 is Lyapunov stable. Actually, every

periodic solution in the face (1, ∗, ∗, 0) attracts a three-dimensional manifold of nearby orbits.

Indeed, the two external eigenvalues (Floquet or Lyapunov exponents) along such a periodic

solution (with period T ) are given by

1

T

∫ T

0

(c1 − y(t))p dt = (c1 − c2)p < 0, and
1

T

∫ T

0

−(1− p)(1− x`(t)) dt = −(1− 2p) < 0

(by the averaging property of the replicator dynamics, see Schuster and Sigmund (1981), or Hof-

bauer and Sigmund (1998, Exercise 10.4.1, or more generally, Theorem 7.6.4)), and equal the two

external eigenvalues at the equilibrium E1 appearing in (12). Hence, by applying the reduction

principle (Kuznetsov 2004, Theorem 5.3) to the Poincaré return map at any of the periodic orbits

in this two-dimensional face, one obtains an open set in [0, 1]4 containing the (relatively open)

face (1, ∗, ∗, 0), where orbits are attracted by one of the periodic orbits in (1, ∗, ∗, 0).

28



Proposition 4. [Replicator dynamics near P1.] For the replicator dynamics (10) on the hypercube

[0, 1]4, the equilibrium component P1 is unstable. Nevertheless, it has a basin of attraction with

nonempty interior.

Proof. Near the rest points (0, 0, y, 0) we have the linearized dynamics:

ẋh = (y − c1)p xh

ẋ` = (y − c2)(1− p) x`

ẏ = 0

ẏ′ = (2p− 1) y′ < 0.

(13)

The rest points (0, 0, y, 0) with 0 ≤ y ≤ c1 < c2 are therefore Nash equilibria. For 0 ≤ y < c1,

all three external eigenvalues are negative, hence the corresponding point is a quasistrict Nash

equilibrium and attracts a 3-dimensional stable manifold (as a consequence of the stable manifold

theorem). The basin of attraction of the whole component P1 has nonempty interior. This is again

a consequence of the reduction principle, see, e.g., Kuznetsov (2004, Theorem 5.2), as the line of

rest points (0, 0, ∗, 0) forms the center manifold. But the study of the behavior of the dynamics

near the end point of P1, which we denote by -P1 = (0, 0, c1, 0), shows that the component is

unstable: -P1 has a 2-dimensional stable manifold and a 2-dimensional center manifold, the latter

contained in the 2-dimensional face (∗, 0, ∗, 0) with dynamics

ẋh = xh(1− xh)(y − c1)p,

ẏ = y(1− y)pxh.
(14)

This is the replicator dynamics of a nongeneric 2 × 2 game shown in the top right square of

Figure 3. There is one orbit converging to the endpoint -P1= (0, 0, c1, 0), and one orbit with -P1

as α–limit which converges to (1, 0, 1, 0), a corner of the face of E1. This shows that the endpoint

-P1 is unstable (unlike all other Nash equilibria in the component P1) and hence the component

P1 itself is unstable.

Proposition 5. [Convergence, class I.i, 0 < p < 1/2.] All orbits in the interior of the hypercube

converge to the set {(xh, x`, y, y′) : (xh = 1 or x` = 0) and y′ = 0}, which is to say that in the

long run, either the high type sends the costly signal s or the low type does not send it, and in the

absence of the costly signal s, player 2 never accepts.

Proof. To prove this, we use two Lyapunov functions. From the first two equations of (10) we see

that
ẋh

pxh(1− xh)
− ẋ`

(1− p)x`(1− x`)
= c2 − c1 > 0. (15)

Therefore:
1

p
[log xh − log(1− xh)]· − 1

1− p [log x` − log(1− x`)]· = c2 − c1 > 0
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and [
xh

1− xh

]1−p [
1− x`
x`

]p
↑ ∞.

Since the numerators are bounded, we infer that

(1− xh)x` → 0, (16)

which implies that all interior orbits converge to the union of the two facets xh = 1 (in Figure 2,

the bottom cube) and x` = 0 (the inner cube). Similarly, since p < 1
2 , we obtain from the last two

equations of (10)

[log y − log(1− y) + log y′ − log(1− y′)]· =
ẏ

y(1− y)
+

ẏ′

y′(1− y′) = 2p− 1 < 0, (17)

and hence

yy′ → 0,

which implies that all interior orbits converge to the union of the two facets y = 0 and y′ = 0.

The ω–limit sets must then be contained in the union of the following four two-dimensional faces,

shown in Figure 3:

– (1, ∗, 0, ∗), the lower left square in Figure 3 and Figure 2, on which orbits converge to

(1, 0, 0, 0);

– (1, ∗, ∗, 0), the lower right square in Figure 3 and the lower front square in Figure 2, that is,

the face containing E1 and the periodic solutions;

– (∗, 0, 0, ∗), the top left square in Figure 3, and the inner left square in Figure 2, on which all

orbits converge to (0, 0, 0, 0); and

– (∗, 0, ∗, 0), the top right square in Figure 3, and the inner front square in Figure 2, which

contains the equilibrium component P1 in an edge.

Actually, we can show that y′ → 0. This can be done in two ways. One is by eliminating dominated

strategies in the original normal form game with payoff matrix in Figure 1. The other way is to

directly show that an interior orbit cannot have ω–limit points with y = 0 and y′ > 0. The ω–limit

set of any orbit is a closed, connected, invariant, and internally chain transitive (ICT) subset (i.e.,

any two points in it can be connected by pseudo-orbits), see Benäım (1999, Corollary 5.6). Note

that the union of all four squares in Figure 3 is an ICT set. And many subsets are ICT. Even the

whole state space [0, 1]4 is an ICT set. So this concept by itself is not enough to prove the result.

Suppose the ω–limit set Ω of some interior orbit contains a point with y′ > 0 (i.e., in the left

half of Figure 3). Then it must contain a rest point in the edge (1, 1, 0, ∗), and even a continuum

{(1, 1, 0, y′) : y′ ∈ [0, ȳ]} of such rest points. Linearization at these rest points shows that there
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p < 1
2

0 ≤ c1 < c2 < 1
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1110

1111

0110

0111

-P1
P1

E1

-P1

1010

Figure 2: Nash equilibria and replicator dynamics for class I.i, 0 < p < 1/2: the partially revealing

equilibrium E1, which sits in the face (1, ∗, ∗, 0) (see Figure 3, bottom right square, for a close-up

of this face), and the continuum of equilibria P1, which stretches from the vertex (0, 0, 0, 0) to

the point (0, 0, c1, 0) marked as -P1 in Figure 3 (top right square). Arrows on the edges show the

direction of the flow of the replicator dynamics (10). Edges without arrows consist of rest points.

Also shown: periodic orbits around E1 and the connecting orbit from -P1 to (1, 0, 1, 0).

are two positive eigenvalues (in direction xh and x`) and one negative eigenvalue (in direction y).

Therefore the center manifold is only one-dimensional and coincides with the edge of rest points.

By the reduction principle, there is an invariant foliation with 3-dimensional leaves transverse to

this edge. However, since Ω contains a continuum of such rest points, the orbit must move slowly

and close along this continuum, a contradiction. So ω–limits are contained in the union of the two

squares on the right of Figure 3.

Remark. We conjecture that (almost) all orbits converge either to the supporting face of E1, in

fact to one of the periodic orbits in the supporting face of E1, or to the component P1. However,

this does not follow from the above arguments. There are many ICT sets in the union of the

two squares (right half of Figure 3), e.g., the heteroclinic cycle 1100 → 1000 → −P1 → 1010 →
1110→ 1100. It is not obvious whether such heteroclinic cycles can attract orbits from the interior

of the hypercube or not.
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xh = 1

x` = 0

y = 0 y′ = 0
1101 1100 1110

1001 1010

0001 0000 0010

1000

P1

E1

Figure 3: The four two-dimensional faces that attract all interior orbits of the replicator dynamics

(10) for 0 < p < 1
2 . Actually, the two on the right attract all of them.

1
2 < p < 1: In this case, (10) has the following rest points: all 24 corners of the hypercube, the

edges (1, 1, 0, ∗) and (1, 1, 1, ∗), the latter containing the Nash-equilibrium component P2, as well

as the edges (0, 0, ∗, 0) and (0, 0, ∗, 1), the latter coinciding with the Nash-equilibrium component

P3, and the Nash equilibrium E2 = (1− 1−p
p , 0, 1, 1− c1); see Figure 4.

Proposition 6. [Replicator dynamics near E2.] For the replicator dynamics (10) on the hypercube

[0, 1]4, E2 is a saddle point within the face (∗, 0, 1, ∗) (lower left square of Figure 5), and hence

unstable. It has a 3-dimensional stable and 1-dimensional unstable manifold in [0, 1]4.

Proof. E2 is a quasistrict Nash equilibrium, since there, ẋ`

x`
= (c1−c2)p < 0 and (1−y)·

1−y = 1−2p < 0.

We know already from the analysis of the index that E2 is a saddle point within the face (∗, 0, 1, ∗)
(lower left square of Figure 5). It therefore has a 3-dimensional stable and 1-dimensional unstable

manifold in [0, 1]4.

Proposition 7. [Replicator dynamics near P2.] For the replicator dynamics (10) on the hypercube

[0, 1]4, the equilibrium component P2 is stable but not asymptotically stable. Its basin of attraction

has nonempty interior.
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Proof. Near the rest points (1, 1, 1, y′) we have the linearized dynamics:

ẋh = (1− xh)(1− y′ − c1)p

ẋ` = (1− x`)(1− y′ − c2)(1− p)

ẏ = (1− y)(2p− 1)

ẏ′ = 0.

(18)

The rest points (1, 1, 1, y′) with 0 ≤ y′ ≤ 1 − c2, given that 1 − c2 < 1 − c1, are therefore Nash

equilibria. For 0 ≤ y′ < 1−c2, all three external eigenvalues are negative, hence the corresponding

point is a quasistrict Nash equilibrium and, as a consequence of the stable manifold theorem,

attracts a 3-dimensional stable manifold. The basin of attraction of the whole component P2

contains an open set from the hypercube, which is again a consequence of the reduction principle,

see, e.g., Kuznetsov (2004, Theorem 5.2), as the line of rest points (1, 1, 1, ∗) forms the center

manifold. Let us now study the behavior near the end point of P2, which we denote by -P2

= (1, 1, 1, 1 − c2). This point has a 2-dimensional stable manifold and a 2-dimensional center

manifold, the latter contained in the 2-dimensional face (1, ∗, 1, ∗) with dynamics

ẋ` = x`(1− x`)(1− c2 − y′)(1− p),

ẏ′ = y′(1− y′)(1− p)(x` − 1).
(19)

This is the replicator dynamics of a nongeneric 2 × 2 game shown in the bottom right square of

Figure 5. Hence P2 is stable (in the 2-dimensional face (1, ∗, 1, ∗) as well as in the hypercube, by

the reduction principle), and all interior orbits starting close to P2 converge to one of the Nash

equilibria in P2, again by the reduction principle. However, P2 is not asymptotically stable for

the replicator dynamics, since the whole edge (1, 1, 1, ∗) consists of rest points (see the lower right

square in Figure 5).

Proposition 8. [Replicator dynamics near P3.] For the replicator dynamics (10) on the hypercube

[0, 1]4, the equilibrium component P3 is asymptotically stable. Its basin of attraction is an open

neighborhood of P3.

Proof. Analogously to (18), one can show that each equilibrium in P3 is quasistrict. So the edge

P3 is a curb set (‘closed under rational behavior,’ see Ritzberger, 2002, section 5.2), and closed

under better replies (Weibull, 1995, section 5.7), and hence a strict NE set. By the reduction

principle (or a simple Lyapunov function argument), P3 is asymptotically stable.

Proposition 9. [Convergence, class I.i, 1/2 < p < 1.] Every orbit in the interior of the hypercube

converges to a Nash equilibrium. (On the boundary, orbits may also converge to one of the rest

points.) The 3-dimensional stable manifold of E2 separates the basins of attraction of the two

equilibrium components P2 and P3.
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p > 1
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Figure 4: Nash equilibria and replicator dynamics for class I.i, 1/2 < p < 1: the partially revealing

equilibrium E2, which sits in the face (∗, 0, 1, ∗) (Figure 5, bottom left square); the continuum of

equilibria P2, which stretches from the vertex (1, 1, 1, 0) to the point (1, 1, 1, 1 − c2) marked as

-P2 (Figure 5, bottom right square); and the continuum of equilibria P3, covering the entire edge

from (0, 0, 0, 1) to (0, 0, 1, 1).

y = 1

y′ = 1

x` = 0 xh = 1

0011 1111

0010 1010 1110

0001 1001 1101

1011

P3

E2

P2

Figure 5: The four two-dimensional faces that attract all interior orbits of the replicator dynamics

(10) for 1
2 < p < 1. Actually, as shown in Proposition 3, interior orbits converge to either P3, or

E2, or P2.
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Proof. We use the same two Lyapunov functions as in the proof of Propositon 5. However, the

expression in (17) is now positive, because p > 1
2 , and hence

(1− y)(1− y′)→ 0.

This means that all orbits converge to the union of the two facets y = 1 (the cube at the right in

Figure 4) and y′ = 1 (the cube in the back). Recall (16), which holds for all p ∈ (0, 1) and shows

convergence to the union of xh = 1 (the bottom cube) and x` = 0 (the inner cube). Therefore,

the ω–limit set of any interior orbit is contained in the union of the following four two-dimensional

faces, shown in Figure 5:

– (1, ∗, 1, ∗), the lower right square in Figure 5 and Figure 4, which contains the edge of

rest points (1, 1, 1, ∗), and on which interior orbits converge to one of the Nash equilibria

(1, 1, 1, y′), 0 < y′ < 1− c2, in the equilibrium component P2;

– (1, ∗, ∗, 1), the upper right square in Figure 5, and the lower back square of the hypercube

Figure 4, on which interior orbits converge to the corner (1,0,1,1);

– (∗, 0, 1, ∗), the lower left square in Figure 5, and the inner right square of Figure 4, which

contains the saddle point E2, and on which almost all orbits converge to (0, 0, 1, 1) ∈ P3

or to (1, 0, 1, 0), with E2 on the separatrix, i.e., the manifold separating the two basins of

attraction. Note that (1, 0, 1, 0) is unstable along the edge (1, ∗, 1, 0), along which there is a

connection to (1, 1, 1, 0) ∈ P2.

– (∗, 0, ∗, 1), the upper left square in Figure 5, and the inner back square of Figure 4, which

contains the edge of rest points (0, 0, ∗, 1) = P3, and on which interior orbits converge to

one of the Nash equilibria in P3.

The ω–limit set of an orbit is a closed, connected, invariant, and internally chain transitive (ICT)

subset (i.e., any two points in it can be connected by pseudo-orbits), see Benäım (1999), Corollary

5.6. The maximal ICT sets in the four squares in Figure 5 are the three corners 0010, 1001, 1101,

the edge (0, 0, ∗, 1) = P3, and the ‘house–shaped’ pentagon (let’s call it H) spanned by the square

(1, ∗, 1, ∗), E2, and the orbits connecting 1011 with E2 and 1010.

The corners (0, 0, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1) cannot attract orbits from the

interior of the hypercube, since they are not Nash equilibria. If an ω–limit set Ω of an interior

orbit satisfies Ω ⊆ P3, then the reduction principle implies that ω(x) is one of the NE in P3. If

Ω ⊆ H (and Ω 6= {E2}), then it must contain an equilibrium from P2, and then by the reduction

principle, it is one of the NE (1, 1, 1, y′) with 0 < y′ < 1− c2.

p = 1
2 : In this case, (10) has the following rest points: all 24 corners of the hypercube (Fig-

ure 6), the square (0, 0, ∗, ∗) containing the Nash-equilibrium component P1-E2’-P3, and the
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Figure 6: Nash equilibria and replicator dynamics for class I.i, cp = 1/2: the equilibrium compo-

nent P1-E2’-P3, which corresponds to the pentagon in the face (0, 0, ∗, ∗) given by the convex hull

of (0, 0, 0, 0), -P1 = (0, 0, c1, 0), E2’ = (0, 0, 1, 1−c1), (0, 0, 1, 1), and (0, 0, 0, 1); and the equilibrium

component E1’-P2, which corresponds to the triangle in the face (1, 1, ∗, ∗) given by the convex

hull of E1’ = (1, 1, c2, 0), (1, 1, 1, 0), and -P2 = (1, 1, 1, 1 − c2). Also shown: two orbits leading

from the component P1-E2’-P3 to (1, 0, 1, 0).

square (1, 1, ∗, ∗) containing the Nash-equilibrium component E1’-P2. In this case, we first show

that every orbit converges to a Nash equilibrium, and then we discuss the behavior near the two

equilibrium components.

Proposition 10. [Convergence, class I.i, p = 1/2.] Each orbit in the interior of the hypercube

converges to a Nash equilibrium, either in P1-E2’-P3 or in E1’-P2.

Proof. For this case, after omitting the common factor 1
2 , the replicator dynamics for behavior

strategies (10) is given by:

ẋh = xh(1− xh)(y − y′ − c1),

ẋ` = x`(1− x`)(y − y′ − c2),

ẏ = y(1− y)[xh − x`],

ẏ′ = y′(1− y′)[−xh + x`].

(20)

36



y + y′ = 1

x` = 0 xh = 1
0010 1010 1110

0001 1001 1101

P1-E2’-P3

E1’-P2

Figure 7: The dynamics for p = 1
2 on the intersection of the two cubes xh = 1 and x` = 0 with

the invariant diagonal y + y′ = 1.

From (15) we get with φ(x) = log x
1−x (where φ : (0, 1)→ R is strictly increasing and bijective)

(φ(xh)− φ(x`))
·

= c2 − c1 > 0

and hence, for some constant C0,

φ(xh(t))− φ(x`(t)) = (c2 − c1)t+ C0

Therefore, along each interior solution, there is a time t0 s.t. φ(xh(t0)) = φ(x`(t0)), and hence

xh(t0) = x`(t0). Then for t > t0: φ(xh(t)) > φ(x`(t)), hence xh(t) > x`(t), and from (20), ẏ(t) > 0

and ẏ′(t) < 0. Thus y(t) and y′(t) are ultimately monotone, hence they converge. Therefore,

again from (20), xh(t) and x`(t) are ultimately monotone and hence they converge. So the limit

of each interior solution exists, and by the folk theorem of evolutionary game theory (Hofbauer

and Sigmund 1998, Theorem 7.2.1 (b) or Cressman 2003, Theorem 2.5.3 ii), it must be a Nash

equilibrium.

Remark. From the last two equations of (20), we get a constant of motion:

[log y − log(1− y) + log y′ − log(1− y′)]· =
ẏ

y(1− y)
+

ẏ′

y′(1− y′) = 0 (21)

and hence, with C > 0 constant,

yy′ = C(1− y)(1− y′). (22)

This provides a foliation of the hypercube into 3d invariant manifolds.

Note also that (20) is symmetric w.r.t. (y, y′) 7→ (1 − y′, 1 − y). In particular, the 3d set

y + y′ = 1 (a ‘diagonal’ of the hypercube) is invariant under the dynamics. This corresponds

to the choice C = 1 in (22). In Figure 7, we visualize the dynamics on the intersection of this

invariant diagonal with the cubes xh = 1 and x` = 0 (which together attract all interior orbits, as

a consequence of (16) again, which holds for all p ∈ (0, 1)).
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The set of Nash equilibria splits into two connected components, each of them 2-dimensional:

E1’-P2 : xh = x` = 1, y′ ≤ y − c2,

P1-E2’-P3 : xh = x` = 0, y′ ≥ y − c1.

Proposition 11. [Replicator dynamics near E1’-P2.] For the replicator dynamics (10) on the hy-

percube [0, 1]4, E1’-P2 is stable, but not asymptotically stable. Its basin of attraction has nonempty

interior.

Proof. Since E1’ = (1, 1, c2, 0) and P2 is the line segment from (1, 1, 1, 1) to (1, 1, 1, 1 − c2), the

component E1’-P2 is the convex hull of E1’ and P2, a triangle (see Figure 6). All equilibria with

xh = x` = 1, y′ < y − c2 are quasistrict and attract a 2-dimensional stable manifold, together an

open set of orbits in [0, 1]4.

Proposition 12. [Replicator dynamics near P1-E2’-P3.] For the replicator dynamics (10) on the

hypercube [0, 1]4, P1-E2’-P3 is unstable. Nevertheless, it has a basin of attraction with nonempty

interior.

Proof. The component P1-E2’-P3 is the convex hull of P1, E2’ = (0, 0, 1, 1 − c1) and P3, see

Figure 6. It is a pentagon with three right angles and a line of symmetry. All equilibria in this

component with xh = x` = 0, y′ > y − c1 are quasistrict and attract a 2-dimensional stable

manifold, together an open set of orbits in [0, 1]4. However, the component P1-E2’-P3 is unstable.

Indeed, the vertex E2’ is unstable: On (∗, 0, 1, ∗) (the inner right square), there is an orbit from

E2’ down to (1, 0, 1, 0) (see Figure 6), and from there to (1, 1, 1, 0) in the component E1’-P2.

Similarly, every point on the line segment (0, 0, y′ + c1, y
′) : 0 ≤ y′ ≤ 1 − c1 (the edge of the

pentagon connecting E2’ with the endpoint -P1 of the component P1) is unstable. From each of

these points, there is a connecting orbit to (1, 0, 1, 0). It looks like a waterfall converging to one

point.

To summarize: For the case that c2 < 1 (class I.i), how does the flow on the hypercube change,

as p goes through 1
2? The flow on xh = x` = 0 (the upper inner square) switches in the y′ direction

from ↓ to ↑, thus replacing the attractor P1 with the attractor P3. The flow on xh = x` = 1 (the

bottom outer square) switches in the y direction from ← to →. All the other arrows on the

one-dimensional skeleton of the hypercube stay the same.

Class I.ii: 0 < c1 < c2 = 1

From (10) we get ẋ` < 0 in (0, 1)4 and ẋ` = 0 if y = 1 and y′ = 0. Hence the ω–limit of every

interior orbit is contained in the union of (∗, ∗, 1, 0) (the front right square) and (∗, 0, ∗, ∗) (the
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inner cube).

0 < p < 1
2 : Here the equilibrium E1 (from class I.i) moves from a 2-dimensional face onto the edge

(1, ∗, 1, 0) (the right lower front edge connecting the outside to the inner cube): E1 = (1, p
1−p , 1, 0).

The whole edge (1, ∗, 1, 0) consists of rest points of the replicator dynamics, and these are Nash

equilibria if and only if x` ≤ p
1−p . In other words, E1 is now the endpoint of a one-dimensional

component of Nash equilibria, bounded by E1 and E* = (1, 0, 1, 0), the fully revealing equilibrium.

The equilibrium component E*-E1, and every single equilibrium in it, is stable under the replicator

dynamics, but not asymptotically stable, as it is part of an edge of rest points. Its basin of

attraction has nonempty interior. The other component P1 is again unstable: there is an orbit in

(∗, 0, ∗, 0) (the inner front square) connecting the endpoint of P1 to E*.

1
2 ≤ p < 1: The components P2 respectively E1’-P2, which exist in class I.i, shrink to the singleton

(1, 1, 1, 0) as c2 ↑ 1. But for c2 = 1, the whole edge (1, ∗, 1, 0) connecting E* = (1, 0, 1, 0) with

(1, 1, 1, 0) consists of Nash equilibria. This component, denoted by E*-E1-P2, is stable under the

replicator dynamics, but not asymptotically stable, as the entire edge (1, 1, 1, ∗) (as in class I.i)

consists of rest points. The other components behave as in class I.i.

Class I. iii: 0 < c1 < 1 < c2

From (10) we get ẋ`/x` < 0 and hence ẋ` ↓ 0 whenever x` < 1. Now the fully revealing equilibrium

E* = (1,0,1,0) is a strict Nash equilibrium, and therefore asymptotically stable under the replicator

dynamics. As c2 increases from the value 1 to values larger than 1, the one-dimensional component

on the edge from E* to (1, 1, 1, 0) shrinks suddenly to the strict equilibrium E*. The other

components behave as in class I.i (c2 < 1).

Figure 8 shows Nash equilibria and the replicator dynamics in the hypercube for all nine subclasses

of class I.

3.4 Best-response dynamics

The best-response dynamics for a two-population game is given by:

ẋ ∈ BR1(y)− x

ẏ ∈ BR2(x)− y
(23)

In analogy to Lemma 1 on the replicator dynamics (foliation into invariant manifolds), we have

the following projection result for the best-response dynamics.
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Figure 8: Nash equilibria and replicator dynamics in the hypercube for class I: I.i, 0 ≤ c1 < c2 < 1

(first column), I.ii, 0 ≤ c1 < c2 = 1 (second column), I.iii, 0 ≤ c1 < 1 < c2 (third column);

0 < p < 1/2 (first row), p = 1/2 (second row), 1/2 < p < 1 (third row).
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Lemma 2. Let u : ∆4 → R4 be a payoff function that satisfies u1 + u4 = u2 + u3. Then x ∈ ∆4

is a best reply, i.e., x ∈ Argmaxy∈∆4

∑4
i=1 yiui, if and only if (x, x′) ∈ [0, 1]2 is a best response,

i.e., it maximizes (x, x′) 7→ x(u1 − u3) + x′(u1 − u2) = x(u2 − u4) − x′(u2 − u1) = . . . , where

x = x1 + x2, x
′ = x1 + x3.

Proof. (1, 0, 0, 0) ∈ ∆4 is best response iff u1 ≥ u2 and u1 ≥ u3 iff x = x′ = 1 is best response

in [0, 1]2. And, (0, 1, 0, 0) ∈ ∆4 is best response iff u2 ≥ u1 and u2 ≥ u4 iff x = 1, x′ = 0 is best

response in [0, 1]2, and similarly for the two other cases.

Lemma 2 is related to the behavior of the best-response dynamics in role games (compare Berger

2001 and Cressman 2003). Together with equations (3) and (5), Lemma 2 reduces (23) to a

best-reponse dynamics on the hypercube [0, 1]4.

Let

H(u) =


1 if u > 0

0 if u < 0

[0, 1] if u = 0

denote the set-valued version of the Heaviside function.

Proposition 13. [Projection of the BR dynamics.] For the normal-form game in Figure 1, the

best-response dynamics (23) simplifies to:

ẋh ∈ H(y − c1 − y′)− xh,

ẋ` ∈ H(y − c2 − y′)− x`,

ẏ ∈ H(pxh − (1− p)x`)− y,

ẏ′ ∈ H(p(1− xh)− (1− p)(1− x`))− y′,

(24)

with the state space of this differential inclusion being the hypercube [0, 1]4.

Proof. This follows from Lemma 2 together with equations (3) and (5).

Class I.i: 0 ≤ c1 < c2 < 1

Proposition 14. [BR dynamics, 0 < p < 1
2 .] All orbits of (23) converge to one of the two

Nash-equilibrium components, either to E1 or P1. E1 is asymptotically stable. P1 is unstable, but

its basin of attraction has nonempty interior.

Proof. The square {(xh, x`) ∈ [0, 1]2} is divided into three regions: A = {(xh, x`) ∈ [0, 1]2 :

pxh − (1− p)x` > 0}, B = {(xh, x`) ∈ [0, 1]2 : 2p− 1 < pxh − (1− p)x` < 0}, and C = {(xh, x`) ∈
[0, 1]2 : p(1− xh)− (1− p)(1− x`) > 0}. For x ∈ A, y increases and y′ decreases, more precisely,

(y, y′) moves straight towards (1, 0). In B, (y, y′) moves towards (0, 0), and in C towards (0, 1).
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Similarly, the square {(y, y′) ∈ [0, 1]2} splits into three regions: D = {(y, y′) : y′ < y − c2} where

(xh, x`) moves straight towards (1, 1); E = {(y, y′) : y − c1 > y′ > y − c2} where (xh, x`) moves

straight towards (1, 0); and F = {(y, y′) : y′ > y − c1} where (xh, x`) moves straight towards

(0, 0). Now, the region BF is positively invariant, i.e., an orbit that starts there, will stay there

in positive time, and converge straight towards (0, 0, 0, 0) ∈ P1. Note that some orbits from BE

enter BF and hence converge to (0, 0, 0, 0) ∈ P1. On the other hand, many orbits starting in

BE (in particular those close enough to E1) move to AE and then to AD and further to BD

and back to BE. Orbits cycling indefinitely between these four regions convergence to the mixed

equilibrium E1. Therefore E1 is asymptotically stable. The component P1 is unstable, since there

is a solution starting at -P1 = (0, 0, c1, 0) and heading straight towards (1, 0, 1, 0), until it reaches

( c2−c1
1−c1 , 0, c2, 0) (from where it will finally converge to E1).

Proposition 15. [BR dynamics, 1/2 < p < 1.] All orbits of (23) converge to one of the three

Nash-equilibrium components, either E2, P2, or P3. E2 is unstable; P2 and P3 are asymptotically

stable.

Proof. The region {(xh, x`, y, y′) ∈ [0, 1]4 : p(1 − xh) − (1 − p)(1 − x`) < 0, y − c2 − y′ > 0}
is positively invariant (that is, invariant in the positive time direction) under the best-response

dynamics, and orbits move straight towards the Nash equilibrium (1, 1, 1, 0) in P2. In the positively

invariant region {(xh, x`, y, y′) ∈ [0, 1]4 : 0 < pxh − (1 − p)x` < 2p − 1, y − c1 − y′ < 0} orbits

move straight towards the Nash equilibrium (0, 0, 1, 1) in P3. And in the positively invariant

region {(xh, x`, y, y′) ∈ [0, 1]4 : pxh − (1− p)x` < 0, y − c1 − y′ < 0} orbits move straight towards

the Nash equilibrium (0, 0, 0, 1) in P3. Furthermore, it is easy to check that both P2 and P3

are asymptotically stable, every orbit converges to the set of Nash equilibria, and every Nash

equilibrium is the limit of some orbit from the interior. Starting in the three-dimensional set

{(xh, x`, y, y′) ∈ [0, 1]4 : 0 < pxh − (1 − p)x` ≤ 2p − 1, y′ = y − c1} allows for the orbit to go

straight towards E2 (but there are other orbits with the same initial condition heading towards

P2 or P3).

Proposition 16. [BR dynamics, p = 1
2 .] All orbits of (23) converge to one of the two Nash-

equilibrium components, either E1’-P2 or P1-E2’-P3. E1’-P2 is asymptotically stable. P1-E2’-P3

is unstable, but its basin of attraction has nonempty interior.

Proof. The region {(xh, x`, y, y′) ∈ [0, 1]4 : xh < x`, y−c1−y′ < 0} is positively invariant under the

best-response dynamics, and orbits move straight towards the Nash equilibrium (0, 0, 0, 1) in P1-

E2’-P3. The region {(xh, x`, y, y′) ∈ [0, 1]4 : xh > x`} is also positively invariant. Orbits starting

there enter the subset where y − y′ > c2 where they move straight towards the Nash equilibrium

(1, 1, 1, 0) in E1’-P2. It is easy to check then that every best-response orbit converges to the set of
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Nash equilibria, and for every Nash equilibrium E one can find an orbit starting on the set xh = x`

converging straight to E. Furthermore: In a neighborhood of E1’-P2, ẋh > 0. Therefore, every

orbit starting close enough to this component will reach the region {(xh, x`, y, y′) ∈ [0, 1]4 : xh >

x`} while y − y′ is still larger than c1, and then, as stated above, will converge back to (1, 1, 1, 0),

showing that E1’-P2 is asymptotically stable. But there are orbits connecting the component P1-

E2’-P3 to the component E1’-P2: Start at a NE on the line segment -P1-E2’, i.e., (0, 0, y, y′) with

y− y′ = c1. Then the high type is indifferent, and there is an orbit heading straight for (1, 0, 1, 0).

This orbit enters the region {(xh, x`, y, y′) ∈ [0, 1]4 : xh > x`, c1 < y − y′ < c2} and and then

enters {(xh, x`, y, y′) ∈ [0, 1]4 : xh > x`, y−y′ ≥ c2} where it converges straight towards (1, 1, 1, 0),

connecting the component P1-E2’-P3 to the component E1’-P2, which implies that P1-E2’-P3 is

unstable.

These results carry over to the two other cases regarding c2, namely c2 = 1 (ii), and c2 > 1 (iii),

when we identify, for each value of p, the respective +1 equilibrium components: for 0 < p < 1/2,

E1 (i) ‘turns’ into E*-E1 (ii) respectively E* (iii); for 1/2 < p < 1, P2 ‘turns’ into E*-E1-P2 (ii)

respectively E* (iii); for p = 1/2, E1’-P2 ‘turns’ into E*-E1-P2 (ii) respectively E* (iii).

3.5 Dynamics in the normal form vs. extensive form

The classical interpretation of the replicator dynamics is that the game is played repeatedly by

players drawn at random from a large population, or two large populations in the case of asym-

metric games, with the average payoff of a strategy representing the fitness over the lifetime of an

individual who carries it, with the carriers of these strategies reproducing proportionally to their

fitness based on the biological transmission of strategies. Alternatively, the replicator dynamics

emerges as the limit of various processes based on imitation of strategies that perform well (see,

for instance, Weibull 1995) or a simple model of reinforcement learning (Börgers and Sarin 1997).

For our games, the difference between the replicator dynamics in terms of strategies in the

normal form and behavior strategies in the extensive form of the game is related to the question

of what are the populations within which strategy replication takes place, and as a consequence

what is the form of the behavioral program that is transmitted. For the dynamics in the normal-

form game, the interpretation is straightforward: There are two populations, the player-1 and the

player-2 population, within each of which strategy transmission takes place. What is transmitted

are the programs how to behave in each of the possible roles of the respective player, the two

different types (high and low) for player 1, and the two different information sets (after the

expression or the absence of the costly signal) for player 2. This mechanism fits well to a scenario

of biological transmission of strategies: For individuals of the player-1 population, after strategies

have been transmitted, some random mechanism decides which type they are going to be (high

43



or low), and then, over their lifetime, they apply the action (s or s̄) that their inherited strategy

prescribes for the respective type. Similarly for individuals of the player-2 population, only that

it is not a random mechanism but the distribution of strategies in the player-1 population that

decides with which probability they find themselves in which role, that is, in front of a player 1

who does respectively does not express the costly signal, and conditional on that situation, they

execute the inherited behavioral program.

For the replicator dynamics in terms of behavior strategies, strategies are replicated within the

four subpopulations defined by the agents in the extensive form (the two types for player 1, and the

two agents at different information sets for player 2). For the player-1 population that is to say that

the type is decided first and that replication takes place within the two subpopulations. Similarly,

for the player-2 population, replication takes place within the two roles, after observation of s

respectively s̄. This 4-population dynamics is easier to interpret in terms of a story of imitation.

4 Variants of the model

The typical application of class I, suggested by Spence (1973), is educational credentials as a signal

for performance or productivity—the underlying hypothesis being that obtaining a certain degree

is less costly in terms of effort and time for the more productive type.

However, the assumption of class I that the two types face differential costs in producing the

signal is hard to justify in some applications of costly-signaling theory that have been advanced.

This difficulty comes out most clearly when the cost of the signal is some fixed monetary value.

For example: placing an ad in a newspaper has a price, but that price usually is a fixed rate and

not a function of the quality of the company or institution that buys the ad. And, indeed, models

of advertising as a costly signal (see, for instance, Milgrom and Roberts 1986) usually do not

turn on the assumption of differential costs in producing the signal but are grounded in the idea

that different types have differential benefits when the signal induces the desired action. Class

II captures this mechanism in the context of our simple modeling framework with a single costly

signal.

4.1 Class II: differential benefits in case of success

In class II, the production of the signal is of the same cost c > 0 for the two types of player 1, but

the high type gets an extra payoff of d > 0 if the second player takes action a. The game is shown

in Figure 9. This model can be seen as a discrete and simplified version of Milgrom and Roberts’s

(1986) model of advertising as a signal for product quality, and to some extent, Grafen’s (1990)

formalization of the Handicap Principle. In Milgrom and Roberts’s model, the idea is that a high-

quality product, if consumed once, will attract more consumption in the future, and therefore the
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Figure 9: Class II. At the top, the game in extensive form; at the bottom, the game in normal

form resulting from that extensive-form game.

firm providing it will profit more from a first sale than a firm with a lower-quality product. In

Grafen’s model, the argument of differential payoffs for different types of player 1, when player 2

accepts, appears implicitly in the form of assumptions on the derivatives of the payoff functions.

4.2 Class I and II are structurally equivalent

A convenient circumstance links class II to class I: provided that c and d are positive, which we

assume, games in class II have the same equilibrium structure as those in class I :

(i) If 0 < c < 1, the equilibrium structure of class II is as that of class I when c1 < c2 < 1;

(ii) if c = 1, as that of class I when c1 < c2 = 1; and

(iii) if 1 < c ≤ 1 + d, as that of class I when c1 ≤ 1 < c2.

The numerical values defining the equilibria of class II can be obtained by those of class I by

substituting c1 by c/(1+d) and c2 by c. These values can be interpreted in a meaningful way: Let

us call the relative net cost of s for type t (relative to not using s) the payoff of type t when he does

not use s and player 2 in the absence of s does not take the desired action minus his payoff when

he does use s and player 2, at observing s, does not take the desired action (πt(s̄, ā) − πt(s, ā))

over the payoff difference for this type when he uses s and player 2 does respectively does not take

the desired action (πt(s, a)− πt(s, ā)):

relative net cost of s for type t =
πt(s̄, ā)− πt(s, ā)

πt(s, a)− πt(s, ā)
. (25)
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Then, in class I, the relative net cost of s for the high type is c1, and for the low type c2; and, in

class II, the relative net cost of s for the high type is c/(1 + d), and for the low type c. Both class

I and II then can be said to be characterized by differential relative net costs of the signal s.

The structural equivalence of the two games can be explained in the following way: Once the

parameter changes indicated above are made, the game given a low type is the same in class I

and class II, and the game given a high type in class II is a rescaling of the game given a high

type in class I, namely if in the payoff function for the high type c1 is replaced by c/(1 + d) and

the entire function is premultiplied by (1 + d).2 This explains why, while games of class II, as a

whole, are strictly speaking not rescaled versions of games of class I, they nonetheless have the

same equilibrium structure and stability properties.

4.3 The replicator dynamics for class II

For class II, the payoffs for player 1 against mixed strategies of player 2 are given by

u1(ss,y) = (1 + pd)y − c,

u1(ss̄,y) = −pc+ p(1 + d)y + (1− p)y′,

u1(s̄s,y) = (1− p)(y − c) + p(1 + d)y′,

u1(s̄s̄,y) = (1 + pd)y′.

(26)

Again (3) holds. For player 2 the payoffs are the same as in (4). Thus, the analog of (10), i.e.,

the replicator dynamics for behavior strategies, is now given by

ẋh = xh(1− xh)[(1 + d)(y − y′)− c]p,

ẋ` = x`(1− x`)[y − y′ − c](1− p),

ẏ = y(1− y)[pxh − (1− p)x`],

ẏ′ = y′(1− y′)[p(1− xh)− (1− p)(1− x`)].

(27)

This is essentially the same as class I with c1 = c
1+d and c2 = c, except that the speed of xh is

multiplied by (1 + d).

4.4 Class I or II, or a combination?

In some phenomena, both the conditions of class I and of class II might come in. Education is a

case in point. If a certain educational credential is costly not only in terms of effort but also in

terms of money, it can also come to function as a signal in the sense of class II. Having been to a

certain school then becomes a signal of wealth or a signal for future performance and commitment.

It is as if the prospective employee were saying: “It pays off for me to have invested into my degree,

2We would like to thank a reviewer of this journal for having shared this observation with us.
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because once I get hired, I know that I will perform well and therefore not lose my job quickly,

and so the initial investment in my degree pays off for me.” Another example is signals of dress:

having a good suit or dress and shoes is expensive (a signal in the sense of class II), but wearing

them might, under certain circumstances, also be a physical effort that different individuals might

master in different degrees (a signal in the sense of class I).

If, for a certain application, both aspects are relevant and one is interested in a finer-grained

analysis, one can set up a combined model with differential costs of producing the costly signal,

c1 and c2, and an extra payoff d for the high type if player 2 takes the desired action. In such a

combined model, the relative net cost of s for the high type will be c1/(1 + d), and for the low

type c2. The equilibrium structure will then be as in class I only with c1 replaced by c1/(1 + d).

The advantage of considering class I and II as two separate models first is both of practical

as well as analytical nature: In the interest of exposition and the aim of providing intuition, it is

more convenient to work with class I first, instead of starting out with the combined model and

conducting the analysis within that framework (it is, not least, much easier to carry c1 through

all numerical expressions, tables, and graphs, than c1/(1 + d)). Besides that, we also gain some

insight into the mechanism of costly signaling by considering class I and class II separately: Each

of the two classes represents minimal conditions under which costly-signaling phenomena can be

accounted for. If the assumptions of both classes, different costs in production of the costly signal

(class I) and differential benefits from acceptance for the high type (class II), come in, the resulting

equilibrium structure will have the same qualitative properties as those of class I and class II and

hence the same explanatory potential. But we do not need both of these assumptions to get

these qualitative properties of the model, one of them, different costs in production or differential

benefits from acceptance for the high type, is sufficient.

5 Excursion: Classical, belief-based, concepts of equilib-

rium refinement in costly-signaling games

The multiplicity of equilibria in signaling games and the question of which equilibrium outcomes

should be considered plausible predictions of the model have been extensively discussed in classical

game theory. In view of a unification of the field, we therefore find it useful to compare our results

to this approach of equilibrium refinement.

Sequential Bayesian Nash equilibrium (Kreps and Wilson 1982) requires that players update

their beliefs over the possible states of nature according to Bayes’ law along the equilibrium path.

However, it does not—at least not for the class of games to which belong signaling games—impose

any restrictions on beliefs ‘off the equilibrium path,’ that is, an information set that could in
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principle be reached but that is not reached in the equilibrium under study—a counterfactual

situation, so to say. In signaling games, a situation off the equilibrium path is one after a signal

that is in principle part of the game but that is not used in the equilibrium under study. In the

games studied here, this concerns equilibrium outcomes in which both types of player 1 use the

same signal, such as P1, P2, and P3. But beliefs off the equilibrium path can be crucial because

it might depend on them whether a given profile of behavior strategies constitutes a sequential

Bayesian Nash equilibrium or not.

Classical refinements of sequential Bayesian Nash equilibrium take this as a starting point: they

operate on the principle of imposing restrictions on players’ beliefs off the equilibrium path. Such

restrictions, so to say, come to complement Bayes’ law where it is not defined, and thereby refine

the Bayesian Nash equilibrium notion. Depending on what is considered a plausible restriction on

beliefs off the equilibrium path, there is an entire family of such refinement concepts. Prominent

in the literature are: the never-a-weak-best-response criterion (Kohlberg and Mertens 1986), a

criterion called ‘divinity’ (Banks and Sobel 1987), and the intuitive criterion (Cho and Kreps

1987). Conveniently for us, for the simple games with two states, two signals, and two possible

reactions to signals that we consider, the never-a-weak-best-response criterion coincides with Banks

and Sobel’s ‘divinity.’

When using this kind of refinements to select equilibria, one point should be noted right away:

fully revealing equilibria such as E* and partially revealing equilibria such as E1 or E2 trivially

survive any refinement based on restrictions on beliefs off the equilibrium path—simply, because

there is no signal off the equilibrium path.

5.1 The never-a-weak-best-response criterion and ‘divinity ’

For the class of games studied here, the never-a-weak-best-response criterion (Kohlberg and

Mertens 1986) requires that after a signal off the equilibrium path, the support of the belief of the

player acting at this information set should not contain types for whom that off-the-equilibrium-

path signal is never (that is, for no reaction of player 2 to the off-the-equilibrium-path signal

that supports the equilibrium outcome under study) an alternative best response relative to the

signal used in the equilibrium under consideration. By this requirement, the equilibrium outcome

P1, in which both types take s̄, as well as outcomes in P1-E2’-P3 for which y′ ∈ [0, 1 − c1) (the

part of the component that stretches from outcomes ‘similar’ to P1 to outcomes ‘similar’ to E2’,

excluding the outcome ‘similar’ to E2’) are discarded. The argument for P1 is this: Within P1

there is one equilibrium, namely the one where player 2 in response to s were to take a with a

probability of exactly c1 (the endpoint of that component, marked -P1 in Figure 2), in which for

the high type taking s is indeed an alternative best response relative to taking s̄. For the low type,

there is no such point. Hence, after s, the low type has to be discarded from the support of the
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belief, and therefore a probability of 1 has to be attributed to the high type. But then, after s,

player 2 should take a for sure (and not with a probability of c1 at most), and this will upset the

equilibrium outcome under study. Hence: P1 is not robust under the never-a-weak-best-response

criterion, and therefore not robust under forward induction and not robust under ‘divinity.’ A

similar argument holds for outcomes in P1-E2’-P3 for which y′ ∈ [0, 1− c1).

All other equilibrium outcomes, interestingly, satisfy the never-a-weak-best-response criterion:

• The fully revealing equilibrium E* as well as partially revealing equilibria of the form of E1 or

E2 survive any refinement based on restrictions on beliefs off the equilibrium path—trivially,

because there is no signal off the equilibrium path.

• For P2 the argument, briefly sketched, is this: after s̄, which here is off the equilibrium path,

the never-a-weak-best-response criterion discards the high type and hence imposes a belief

of 1 on the low type. But this is perfectly in line with the behavior strategies of player 2

that support the equilibrium outcome under study, which all require that in response to s̄

player 2 takes ā with a probability of c2 at least!

• The equilibrium outcome P3 is stable under any refinement that restricts beliefs off the equi-

librium path, for the simple reason that any reaction of player 2 to the off-the-equilibrium

path signal s supports the equilibrium outcome. And, a similar argument applies to equi-

librium outcomes in the component P1-E2’-P3 for which y′ ∈ [1 − c1, 1] (the part of the

component that stretches from outcomes ‘similar’ to E2’ to outcomes ‘similar’ to P3).

5.2 The intuitive criterion

The intuitive criterion (Cho and Kreps 1987), probably the most prominent refinement of sequen-

tial Bayesian Nash equilibrium for signaling games, discards a type from the support of the belief

after an off-the-equilibrium-path signal only if for every possible reaction of player 2 to the off-

the-equilibrium-path signal that type is strictly worse off than in the equilibrium outcome under

study. This is generally less restrictive than the never-a-weak-best-response criterion, respectively

‘divinity,’ and, for the games studied here, has indeed less selective force. It is straightforward to

check that when c2 < 1 (class I.i) or c2 = 1 (class I.ii), P1 and equilibrium outcomes in P1-E2’-P3

for which y′ ∈ [0, 1 − c2] survive under the intuitive criterion (because the low type could profit

from a deviation if player 2 were to accept in case she observes the signal). Only when c2 > 1 (class

I.iii), that is, when the cost of the signal for the low type is strictly higher than the benefit from

being accepted, will the intuitive criterion have the force to discard the no-signaling-no acceptance

equilibrium outcome P1, respectively the outcome in P1-E2’-P3 for which y′ = 0 (because then

the low type cannot possibly get a higher payoff from deviating from s̄ to s), and hence give the

same selection results as the never-a-best-response criterion respectively ‘divinity.’

49



Tables 1, 2, and 3 summarize these results, which all carry over to class II.

6 Comparisons and discussion

6.1 Index vs. classical refinements

Comparing equilibrium-selection results based on dynamic stability with classical, belief-based

refinements, one gets the following implication: Whenever an equilibrium outcome is discarded by

the never-a-weak-best-response criterion, respectively ‘divinity,’ then the equilibrium component

in which it sits has an index of 0, hence different from +1, and therefore cannot be asymptotically

stable under any evolutionary dynamics. In other words: failure of the never-a-weak-best-response

criterion, respectively ‘divinity,’ implies a failure of asymptotic stability under any evolutionary

dynamics. This concerns P1, which exists in any of the subclasses (i–iii) when the prior is below

the critical value p < 1/2, and the outcomes in P1-E2’-P3 for which y′ ∈ [0, 1 − c1) (outcomes

reaching from those similar to P1 to those similar to E2’, excluding those similar to E2’), which

exist in any of the subclasses (i–iii) in the knife-edge case p = 1/2.

But not the other way round: There are equilibrium outcomes sitting in an equilibrium com-

ponent with an index different from +1, hence a component that cannot be asymptotically stable

under any evolutionary dynamics, that do satisfy the never-a-weak-best-response criterion, re-

spectively ‘divinity.’ This concerns two cases: First, the partially revealing equilibrium E2, which

exists in any of the three subclasses (i–iii) when the prior is above the critical value p > 1/2.

Second, outcomes in P1-E2’-P3 for which y′ ∈ [1− c1, 1] (outcomes reaching from those similar to

E2’ to those similar to P3), which exist in any of the three subclasses (i–iii) in the knife-edge case

p = 1/2.

All in all then: the necessary condition for asymptotic stability based on index theory has a bit

more selection force than belief-based refinements: it allows us to discard all equilibrium outcomes

that are also discarded by the strongest belief-based refinements (the never-a-weak-best-response

criterion and ‘divinity’), namely, P1 and the outcomes in the component P1-E2’-P3 for which

y′ ∈ [0, 1 − c1), and in addition to that E2 and the rest of the outcomes in P1-E2’-P3. To put

this into perspective, we should be reminded, though, that an equilibrium like E2 cannot possibly

be discarded by any of the belief-based refinements considered here—simply because there is no

signal ‘off the equilibrium path.’ With respect to E2, the stronger selection force of the index

over belief-based refinements, therefore, cannot be interpreted as a significant result in the context

of the current model but points to a general limitation of belief-based refinements. Similarly,

with respect to the component P1-E2’-P3: the stronger selection force of the index reveals a

more fundamental difference between the two approaches, namely that the index operates on the
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equilibrium component while belief-based refinements operate on the equilibrium outcome; P1-

E2’-P3 shows the interesting case that an equilibrium component (which has one index only) can

harbor different equilibrium outcomes that do not agree on the belief-based refinements that they

fulfill.

6.2 A more nuanced picture under evolutionary dynamics: asymptotic

stability and Lyapunov stability

The picture gets more nuanced when we look at specific evolutionary dynamics. Our results

illustrate that having an index of +1 is indeed only a necessary but not sufficient condition for the

respective component to be asymptotically stable under a specific dynamics: E1, E*-E1, P2, E*-

E1-P2, and E1’-P2, are ‘only’ Lyapunov stable under the replicator dynamics (while still having

a basin of attraction with nonempty interior) but asymptotically stable under the best-response

dynamics. E* and P3, whenever they exist, are asymptotically stable under both the replicator

and the BR dynamics. When an equilibrium component is asymptotically stable under a specific

dynamics, then this is to say that the dynamics, once it has reached this component, after a

small perturbation due to mutations or random drift between strategies already present in the

population, will converge back to a state in that component; when it is Lyapunov stable, then

it will converge back to a state close to but not necessarily in that component. The partially

revealing/partially pooling equilibrium E1 exhibits an interesting form of Lyapunov stability: It

consists of a single state. That state is hardly ever reached, but once the dynamics has come close

to it (or if it was exactly there and then there was a tiny perturbation), it will land on a closed

orbit (a ‘cycle’) around that equilibrium in its supporting face.

Such equilibria and the dynamics close to them might quite well mimic real-world phenomena.

In an equilibrium like E1 = (1, p
1−p , c2, 0), the probabilistic strategies that define it have to hold

exactly: the low type has to use the costly signal exactly with probability p
1−p , to produce the

effect that player 2, when she observes the costly signal, will be indifferent between accepting

and not accepting; and player 2, when she observes the costly signal, has to accept exactly with

probability c2, to make that player 1’s low type is indifferent between using the costly signal and

not using it. One might question if players ever ‘hit’ the right probabilities exactly. What might

be more realistic is that players get these probabilities approximately right. This is precisely what

happens in a state close to E1 in its supporting face. On every point in the supporting face of E1,

(1, ∗, ∗, 0), the low type uses s with some probability and player 2, when she observes s, accepts

with some probability; while the highy type always use s, for sure, and player 2, in the absence of

s does not accept. If these probabilistic choices are not exactly such as to make that players are

in equilibrium, there will be adjustments under evolutionary dynamics. Our study predicts that
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if these adjustments are based on reproduction of strategies according to their success (replicator

dynamics), then this leads to cycling around the equilibrium; if they are based on best-response

behavior, they will make players converge to the equilibrium.

All in all then, while asymptotic stability of an equilibrium component certainly represents

the strongest possible form of stability under specific evolutionary dynamics, an equilibrium that

qualifies ‘only’ as Lyapunov stable (and not asymptotically stable) under some specific dynamics

still has to be considered a valuable solution of the model with the potential to explain some

real-world phenomenon. The incremental theoretical payoff of the study of specific evolutionary

dynamics, over classical belief-based refinements of Nash equilibrium as well as index theory, is

that it allows us to draw that finer-grained picture based on the distinction between asymptotic

and Lyapunov stability under different specific evolutionary dynamics.

6.3 Unstable equilibria: stronger selection force of evolutionary dynam-

ics

All other components, P1, P1-E2’-P3, and E2, those with an index different from +1—which,

interestingly, are also those that are unchanged in all three subclasses regarding c2 (i–iii)—are

unstable under both the replicator and the best-response dynamics.

Our analysis of the two evolutionary dynamics, relative to belief-based refinements of Nash

equilibrium, allows us to refine the picture in two dimensions: First, somewhat similar to the

distinction between different forms of stability, it shows that not all unstable components are

unstable to the same degree. As we have seen, P1 and P1-E2’-P3, though unstable, have a basin

of attraction with nonempty interior under both the replicator and the BR dynamics. What

distinguishes them from components that are stable but not asymptotically stable is this: while

for many—actually most—of the states of which they are composed, after small perturbations,

the dynamics will lead back to a state close to the original equilibrium state, there is at least one

state from where the dynamics leads away. For P1, this is the endpoint of the component marked

as -P1 (Figure 2); for P1-E2’-P3 it is the boundary segment connecting the point marked as -P1

to the point marked as E2’ (Figure 6). The usual interpretation of this form of instability is that

the respective component is not stable under random drift among strategies already present in the

population, that is, shifts inside the component.

The only equilibrium that can be safely discarded from a dynamic, evolutionary point of view

is E2, which is a saddle under both dynamics and therefore its ‘basin of attraction’ has empty

interior. Remarkably, this equilibrium survives under all refinements based on the plausibility of

beliefs ‘off the equilibrium path,’ for the absolutely transparent reason that all signals are used,

that there is no situation off the equilibrium path.
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