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Motivation

As individuals participating in society (consumers, investors, voters,
citizens) we are frequently faced with situation in which we have to
attribute probabilities to certain events — without being able to
derive those probabilities from a clearly defined underlying
mathematical model, such as the throw of a dice.

Instead, we have to exploit subjective information that we acquire
about the state of the world.

Still we are rational. We want to come up with these subjective
probabilities not in an arbitrary way. Rather we want to exploit all
information available to us in a in a coherent and rational way.

−→ Bayesian approach to probabilities offers a model for that.
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But we also interact with others:

When I observe you acting in a certain way, or if I hear you
expressing your probability estimate about a certain event, I might
deduce from that some new information about the state of the
world, which allows me to update the probabilities that I attribute
to certain events.

And in turn: When you then see me acting in a certain way, or
hear me expressing the probability that I attribute to a certain
event (knowing that I have exploited all the information available
to me), you might deduce from that some new information about
the state of the world, which allows you to update the probabilities
that you attribute to certain events.

−→ We are engaged in a Bayesian dialogue.
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Mathematicians working in economics, decision and game theory
have studied such scenarios of indirect information exchange:

• DeGroot, 1974. “Reaching a consensus,” Journal of the
American Statistical Association.

• Dalkey, 1969. “The Delphi method: an experimental study
of group opinion,” United States Air Force Project Rand.

• Aumann, 1976. “Agreeing to disagree,” The Annals of
Statistics 4.

• Geanakoplos and Polemarchakis, 1982. “We can’t
disagree forever,” Journal of Economic Theory.

• Bacharach, 1979. “Normal bayesian dialogues.” Journal of
the American Statistical Association.

• Fagin, Halpern, Moses, Vardi. 1995. Reasoning about
Knowledge. MIT Press. (First published as Reasoning about
Knowledge, Mimeo, IBM, San Jose, California, 1988.)
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Forerunners:

• Lacan, 1945. “Le temps logique et l’assertion de certitude
anticipée : un nouveau sophisme,” Les Cahiers d’Art,
1940–1944; reprinted in: Ecrits (1966). Le Seuil: Paris.

• Littlewood, 1953. A Mathematician’s Miscellany, Methuen
& Co, London.

In markets:

• Milgrom and Stokey. 1982 “Information, trade, and
common knowledge,” Journal of Economic Theory.

• Sebenius and Geanakoplos. 1983. “Don’t bet on it :
contingent agreements with asymmetric information,” Journal
of the American Statistical Association.
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More recent work:

• Polemarchakis, 2016. “Rational dialogs,” Working Paper.
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Part I

The formal framework

(and Aumann’s theorem)
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The formal framework (Aumann 1976)

Let (Ω,B, p) be a probability space:

• Ω the set of possible states of the world,

• B a σ-algebra on Ω, and

• p the prior probability distribution defined on (Ω,B).

Furthermore: Two individuals, 1 and 2, who impute the same prior
probability p to the events in B but who have access to private
information, given by a finite partition Pi of Ω, that is, a finite set

Pi = {Pi1,Pi2, . . . ,Pik , . . . ,PiKi
}

of nonempty subsets of Ω, the classes of the partition, such that:

(a) each pair (Pik ,Pik ′), k 6= k ′, is disjoint and

(b)
⋃

k Pik = Ω.
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The partition Pi models individual i ’s information: when ω ∈ Ω is
the true state, the individual characterized by Pi will learn that
one of the states that belong to the class of the partition Pi to
which belongs ω, which shall be denoted by in Pi (ω), has
materialized.

In order to guarantee that the classes Pik of the partition Pi are
measured by p, we suppose, of course, that they belong to B.
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Example

Let Ω = {a, b, c , d , e, f , g , h, i , j , k} and

Pi = {{a, b, g , h}, {c, d , i , j}, {e, f , k}}.

Assume ω? = c , the true state of the world. Then individual i ,
modeled by the partition above, will only receive the information
that the true state of the world is in {c , d , i , j}, that is, that one of
the states in {c , d , i , j} has materialized (but not which one
exactly). In our notation: Pi (c) = {c , d , i , j}.

Important: We, as the theorist who builds the model, know that
the true state is ω? = c , but the individual in the model does not
know it. He, or she, only knows that it is one of the states in
{c , d , i , j}.
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With this interpretation, if ω is the true state and Pi (ω) ⊂ A, that
is, Pi (ω) implies A, then individual i (at state ω) “knows” that
event A has happened.

In the example above:

Pi = {{a, b, g , h}, {c, d , i , j}, {e, f , k}}.

When ω? = c is the state that has materialized, individual i will
know that the state that has materialized is in {c , d , i , j}, that is,
that the event {c , d , i , j} has occurred.

As a consequence, i will also know that any event that is a
superset of {c , d , i , j} has occurred. For example, i will also know
that the event {a, c , d , i , j , e} has occurred. And certainly, i will
also know that any event disjoint of {c , d , i , j} did not occur. For
example, i will also know that the event {a, e} did not occur.
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A crucial assumption:

Following Aumann (1976), we assume that the prior p defined on
(Ω,B) as well as the information partitions of the two individuals,
Pi , i ∈ I = {1, 2}, are common knowledge between the two
individuals.

According to David Lewis (1969), an event is common knowledge
between two individuals if not only both know it but also both
know that the other knows it and that both know that the other
knows that they both know it, ad infinitum (Lewis 1969).
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A probabilistic model of “beliefs”

More generally, if individual i is Bayesian rational, then for any
event A that belongs to the σ-algebra defined on Ω, after
realization of the true state of the world, i can calculate the
posterior probability of A given the information provided by the
partition Pi , that is, the conditional probability of A given that
the true state belongs to Pi (ω):

qi = p(A | Pi (ω)) =
p(A ∩ Pi (ω))

p(Pi (ω))
.

Remember: Pi (ω) is the information class (or “cell”) of i ’s
partition in which lies the state ω.
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Example Let Ω = {a, b, c , d , e, f , g , h, i , j , k , l ,m}, endowed with
uniform prior, that is, p(ω) = 1/13 for all possible states of the
world, and

P1 = {{a, b, c , d , e, f }, {g , h, i , j , k}, {l}, {m}},
P2 = {{a, b, g , h}, {c , d , i , j}, {e, f , k}, {l ,m}}.

Let A = {a, b, i , j , k} be the event of interest; and ω? = a. Then:

q1 =
P(A | P1(a))

P1(a)
=

p({a, b, i , j , k} ∩ {a, b, c , d , e, f })
p({a, b, c , d , e, f })

=
p({a, b})

p({a, b, c , d , e, f })
=

1

3

q2 =
P(A | P2(a))

P1(a)
=

p({a, b, i , j , k} ∩ {a, b, g , h})
p({a, b, g , h})

=
p({a, b})

p({a, b, g , h})
=

1

2
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Terminology:

In game theory, decision theory, and economics, the probability
attributed to an event is also called a belief.

In this terminology, p(A) is the prior belief of A, which by
assumption is common knowledge between the two individuals, and
p(A | Pi (ω)) the posterior belief that i attributes to A given the
information received through his or her partition.
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Remember: According to David Lewis (1969), an event is common
knowledge between two individuals if not only both know it but
also both know that the other knows it and that both know that
the other knows that they both know it, ad infinitum (Lewis 1969).

To capture this notion within a set-theoretic framework that relies
on the notion of a state of the world, it turns out to be
useful—and having established this is one of Aumann’s
achievements—to consider the meet of the two partitions.
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Definition 1 Let P1 and P2 be two partitions of Ω. The meet of
P1 and P2, denoted by P̂ = P1 ∧P2, is the finest common
coarsening of P1 and P2, that is, the finest partition of Ω such
that, for each ω ∈ Ω,

Pi (ω) ⊂ P̂(ω), ∀i ∈ I = {1, 2},

where P̂(ω) = P1 ∧ P2(ω) is the class of the meet to which
belongs ω.

Example

P1 = {{a, b, c , d , e, f }, {g , h, i , j , k}, {l}, {m}},
P2 = {{a, b, g , h}, {c , d , i , j}, {e, f , k}, {l ,m}}.

P̂ = P1 ∧P2 = {{a, b, c , d , e, f , g , h, i , j , k}, {l ,m}}
The meet of the two information partitions, casually speaking,
represents what is common knowledge between the two individuals.
The following definition makes this more precise.
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Lemma (Aumann 1976) An event A ⊂ Ω, at state ω, is common
knowledge between individuals 1 and 2 in the sense of the recursive
definition (Lewis 1969) if and only if P̂(ω) ⊂ A, that is, if the
information class of the meet of the two partitions to which
belongs the state ω is contained in A.

Example

P1 = {{a, b, c , d , e, f }, {g , h, i , j , k}, {l}, {m}},
P2 = {{a, b, g , h}, {c , d , i , j}, {e, f , k}, {l ,m}}.
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Remark. Of course, if P1 ∧P2 is a coarsening of the two
individual partition, then each of the individual partitions is a
refinement of P1 ∧P2: That is, if P is a class of the meet
P1 ∧P2, then, for each i , the union of th classes Pik of the
partition Pi contained in P is P,⋃

Pik⊂P
Pik = P,

and hence Pi induces a partition of P.

This is easy to verify in the example from above:

P1 = {{a, b, c , d , e, f }, {g , h, i , j , k}, {l}, {m}},
P2 = {{a, b, g , h}, {c , d , i , j}, {e, f , k}, {l ,m}}.

P̂ = P1 ∧P2 = {{a, b, c, d , e, f , g , h, i , j , k}, {l ,m}}
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Posteriors as “events”

Example

Ω = {a, b, c , d , e, f , g , h, i , j , k, l ,m}, with uniform prior,

P1 = {
1/3︷ ︸︸ ︷

{a, b, c , d , e, f } ,
3/5︷ ︸︸ ︷

{g , h, i , j , k} ,
0︷︸︸︷
{l} ,

0︷︸︸︷
{m}},

P2 = {{a, b, g , h}︸ ︷︷ ︸
1/2

, {c , d , i , j}︸ ︷︷ ︸
1/2

, {e, f , k}︸ ︷︷ ︸
1/3

, { l , m }︸ ︷︷ ︸
0

},

Let A = {a, b, i , j , k}. For individual 1: attributing to A a posterior
of 1/3 corresponds to the event {a, b, c, d , e, f , }; attributing to A
a posterior of 0 corresponds to the event {l ,m}; attributing to A a
nonzero posterior corresponds to the event
{a, b, c , d , e, f , g , h, i , j , k}
For individual 2, attributing to A a posterior of 1/2 corresponds to
the event {a, b, c , d , g , h, i , j}, etc.
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Common knowledge of posteriors

P1 = {
1/3︷ ︸︸ ︷

{a, b, c , d , e, f } ,
3/5︷ ︸︸ ︷

{g , h, i , j , k} ,
0︷︸︸︷
{l} ,

0︷︸︸︷
{m}},

P2 = {{a, b, g , h}︸ ︷︷ ︸
1/2

, {c , d , i , j}︸ ︷︷ ︸
1/2

, {e, f , k}︸ ︷︷ ︸
1/3

, { l , m }︸ ︷︷ ︸
0

},

Suppose that ω? = m the true state of the world. Then, individual
1 will attribute to A a posterior of 0. This fact will be common
knowledge between the two individuals, even though individual 2
does not know whether 1 has received the information that the
true states belongs to {l} or to {m}. This will be so, because for
any of these two cases, individual 1 will always have calculated a
posterior of 0.

At the same time, individual 2 will attribute to A a posterior of 0,
and this will also be common knowledge.
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Aumann’s (1976) “agreement” result

Robert Aumann, (1976) “Agreeing to disagree,” The Annals of
Statistics 4 (6): 1236-1239.

• In economics, Aumann’s paper has stimulated a rich literature.

• Derives its importance also for the formal framework that it
proposes for modeling knowledge and common knowledge.

• What is this result?
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Proposition (Aumann 1976)

Let (Ω,B, p) a probability space, P1 and P2 two finite partitions
of Ω, measurable with respect to B, that represent the information
accessible to individual 1 respectively 2, all of this being common
knowledge between the two individuals. Let furthermore A ∈ B be
an event. If at state ω (in virtue of the common knowledge of the
prior probability and the information partitions) the posteriors q1

and q2 that the individuals attribute to A are common knowledge,
then they have to be equal: that is, q1 = q2.
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The proof

Can be understood in three steps. Step 1 (conceptually the most
important) consists in establishing that common knowledge of qi
implies that for any information class of Pi that is a subset of the
information class of the meet to which belongs the true state,
Pi (ω), the conditional probability of A has to be equal to qi :

qi =
p(A ∩ Pi (ω))

p(Pi (ω))
=

p(A ∩ Pik)

p(Pik)
, ∀Pik ⊂ P̂(ω). (1)

Otherwise there would be some level of knowledge at which qi
would not be known, and therefore cannot be common knowledge.

Illustration:

P1 = {

p({b,c}|{a,b})= 1
2︷ ︸︸ ︷

{ a, b } ,

p({b,c}|{c,d})= 1
2︷ ︸︸ ︷

{ c , d } , {e} , {f }}
P2 = { { a, c } , { b, d }, {e, f }},

where A = {e, f }, and a the true state; P̂(a) = {a, b, c , d}
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Step 2: From (1) and the fact that the classes of i ’s partition that
are subsets P̂(ω) induce a partition of P̂(ω), one obtains that:

qi =
p(A ∩ P̂(ω))

p(P̂(ω))
. (2)

To see why (2) holds, note that (1) can be written as

p(A ∩ Pik) = qi p(Pik), ∀Pik ⊂ P̂(ω).

Summing over all Pik ⊂ P̂(ω) gives∑
Pik⊂P̂(ω)

p(A ∩ Pik) = qi
∑

Pik⊂P̂(ω)

p(Pik).

Since the Pik are disjoint (because they are elements of a
partition), and the union over all Pik -s that are subsets of P̂(ω)
gives P̂(ω), by the property of σ-additivity of the probability
measure p we have:

p(A ∩ P̂(ω)) = qi p(P̂(ω)).

Rearranging terms gives equation (2).
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Step 2 relies on the more general fact that if Ak is a sequence of
disjoint subsets of Ω and p(B | Ak) = q for all k , then
p(B | ∪Ak) = q, which is a simple consequence of the Kolmogorov
Axioms.1

Illustration:

P1 = {

p(A|{a,b,c,d})= 1
2︷ ︸︸ ︷

p(A|{a,b})= 1
2︷ ︸︸ ︷

{ a, b } ,

p(A|{c,d})= 1
2︷ ︸︸ ︷

{ c, d } , {e} , {f }}
P2 = {{ a, c }, { b, d }, {e, f }}

1In its more general form, namely that if H is a sub-σ algebra of G ,
then

E[E(X | G ) |H ] = E[X |H ]

this property is sometimes referred to as the Tower Property; see, for
instance Williams (1991). I would like to thank Mathias Beiglböck and
Daniel Toneian for having pointed this out to me.

26 / 71



Step 3: Finally, from the fact that (2) has to hold for each of the
two individuals, one obtains that:

q1 =
p(A ∩ P̂(ω))

p(P̂(ω))
= q2. (3)

which concludes the proof.

Illustration:

P1 = {

p(A|{a,b,c,d})= 1
2︷ ︸︸ ︷

p(A|{a,b})= 1
2︷ ︸︸ ︷

{ a, b } ,

p(A|{c,d})= 1
2︷ ︸︸ ︷

{ c, d } , {e} , {f }}
P2 = { { a, c }︸ ︷︷ ︸

p(A|{a,c})= 1
2

, { b, d }︸ ︷︷ ︸
p(A|{b,d})= 1

2︸ ︷︷ ︸
p(A|{a,b,c,d})= 1

2

, {e, f }}
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The Aumann conditions

Putting (1)–(3) together, one has:

qi =
p(A ∩ Pi (ω))

p(Pi (ω))
=

p(A ∩ Pik)

p(Pik)
=

p(A ∩ P̂(ω))

p(P̂(ω))
∀Pik ⊂ P̂(ω), ∀ i ∈ I (4)

That is, for each i , the posterior attributed to A, given P(ω), has
to be equal to:

(1) the posterior probability of A given any of the classes Pik of
i ’s partition that are contained in the class of the meet to
which belongs the true state of the world P̂(ω), and

(2) the posterior probability of A given P̂(ω), that is, the element
of the meet to which belongs ω.

I refer to equation (4) as the Aumann conditions.
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Example (in which the Aumann conditions hold)

P1 = {{a, b}, {c , d}, {e}, {f }},
P2 = {{a, c}, {b, d}, {e, f }},

A = {b, c} the event of interest, and ω = a the true state of the
world. Uniform prior, that is, 1/6 for each possible state of the
word. Then:

q1 =
p(A ∩ P1(a))

p(P1(a))
=

p({b, c} ∩ {a, b})
p({a, b})

=
p({b})
p({a, b})

=
1

2

q2 =
p(A ∩ P2(a))

p(P2(a))
=

p({b, c} ∩ {c , a})
p({c, a})

=
p({c})
p({c, a})

=
1

2
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The meet is P̂ = {{a, b, c, d}, {e, f }}. Hence, P̂(a) = {a, b, c , d}.
Here, each i thinks it possible that the other has received any of
the classes in the others partition that are included in
P̂ = {{a, b, c , d}. However:

p({b, c} ∩ {c , d})
p({c , d})

=
p({c})

p({c , d})
=

1

2
,

p({b, c} ∩ {d , b})
p({d , b})

=
p({b})

p({d , b})
=

1

2
.

And, as it should be according to the Aumann conditions:

p({b, c} | P̂(a)) =
p({b, c} ∩ {a, b, c, d})

p({a, b, c , d})
=

p({b, c})
p({a, b, c , d})

=
1

2
.
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Illustration:

P1 = {

p(A|{a,b,c,d})= 1
2︷ ︸︸ ︷

p(A|{a,b})= 1
2︷ ︸︸ ︷

{ a, b } ,

p(A|{c,d})= 1
2︷ ︸︸ ︷

{ c, d } , {e} , {f }}
P2 = { { a, c }︸ ︷︷ ︸

p(A|{a,c})= 1
2

, { b, d }︸ ︷︷ ︸
p(A|{b,d})= 1

2︸ ︷︷ ︸
p(A|{a,b,c,d})= 1

2

, {e, f }}

31 / 71



Direct communication

Imagine that after realization of the true state of the world the two
individuals communicate to each other the information class of his
or her partition of which they have learned that the true state of
the world belongs to it. Such an exchange of information can be
referred to as one of direct communication (see, for instance,
Geanakoplos and Polemarchakis 1982).
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What the individuals know after such an exchange is given by the
intersection of the two respective classes of their information
partitions. Over the entire range of Ω, the so defined set of subsets
of Ω is given by the coarsest common refinement of the two
partitions: their so-called join.

Definition 2 Let P1 and P2 two partitions of Ω. The join of P1

and P2, denoted by P̌ = P1 ∨P2, is the coarsest common
refinement of P1 and P2, that is, the coarsest partition of Ω such
that, for each ω ∈ Ω,

P̌(ω) ⊂ Pi (ω), ∀i ∈ I = {1, 2},

where P̌(ω) = P1 ∨ P2(ω) is the class of the join to which belongs
ω.

The classes of the join are obtained by taking for each class of one
partition its intersections with the classes of the other partition
(see, for instance Barbut 1968).
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In the Example from above:

P1 = {{a, b}, {c , d}, {e}, {f }},
P2 = {{a, c}, {b, d}, {e, f }},

The join: P̌ = {{a}, {b}, {c}, {d}, {e}, {f }}
Remember, the meet: P̂ = {{a, b, c , d}, {e, f }}
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A technical note: the matrix representation of two
partitions

Any two finite partitions can be written in the form of a matrix
such that

• the elements of the matrix are occupied by the elements of
the join of the two partitions, with possibly some elements of
the matrix empty but without any rows or columns completely
empty, and

• the information classes of one individual correspond to the
rows of the matrix and that of the other individual to the
columns of the matrix (see, for instance, Barbut 1968).

In such a matrix, the classes of the meet of the two partitions
appear as the unions of those elements of the join that have the
same empty elements along rows as well as columns.
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Example:

P1 = {{a, b}, {c, d}, {e}, {f }},
P2 = {{a, c}, {b, d}, {e, f }},

the join: P̌ = {{a}, {b}, {c}, {d}, {e}, {f }}
the meet: P̂ = {{a, b, c, d}, {e, f }}

Practical for calculating the posteriors for a certain event A: Let

A = {b, c} and ω = a the true state of the world:

{a?} {b} 1
2

{c} {d} 1
2

{e} 0

{f } 0

1
2

1
2

0
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In the figure above, for each row, to the right of the vertical line
(information class of individual 1), appears the conditional
probability of A given that row; for each column, below the
horizontal line (information class of individual 2), appears the
conditional probability of A given the column.
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Part II

Bayesian Dialogues
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Geanakoplos and Polemarchakis’s (1982) scenario of
indirect communication

... Imagine that after having received their private information
about the true state of the world (according to their information
partition), the two individuals, turn in turn, communicate their
posteriors back and forth, each round extracting the information
that is contained in the announcement of the previous round.
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This process is best understood as operating through a successive
reduction of the set of possible states of the world:

• The process starts by discarding all states that are not in the
information class of the meet to which belongs the true state
of the world. Of course, because simply by having received the
information through their partitions—thanks to the common
knowledge of these partitions—it will be common knowledge
between the two individuals that any state that is not in that
class of the meet cannot be the true state of the world.

• Then, at each step t, with one of the individuals announcing
the posterior probability that he or she attributes to the event
of interest A at this step, it becomes common knowledge
between the two individuals that a certain subset of Ω at step
t cannot contain the true state of the world: namely the
union of all those partition classes of the individual who has
just announced his or her posterior that do not lead to that
posterior. This subset is discarded from Ω at step t to give Ω
at step t + 1.
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More formally:

Let Ω0 = Ω.
Step 1: Ω1 = P̂(ω?), where ω? is the true state of the world.
Step t: Ωt = Ωt−1\P̄i(t−1),t−1, where

P̄i(t),t =
⋃

i(t),k

Pi(t),k , such that
p(A ∩ Pi(t),k ∩ Ωt)

p(Pi(t),k ∩ Ωt)
6= qi(t),t ,

qi(t),t =
p(A ∩ Pi (ω) ∩ Ωt)

p(Pi (ω) ∩ Ωt)

with i(t) given by the sequence 1, 2, 1, 2, . . . if individual 1 starts,
and by 2, 1, 2, 1 . . . if individual 2 starts.
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The process ends—more precisely, will have reached an absorbing
state—when a subset of Ω is reached such that the announcement
of the posterior of any of the two individuals does not allow them
to discard any more states.

This terminal subset of Ω will be one on which the “Aumann”
conditions hold: the posteriors will be common knowledge—thanks
to the common knowledge of the information partitions induced by
the reduced set of states of the world at that step—and hence (as
Aumann’s result says) will be equal.
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A dynamic foundation of Aumann’s result

This process converges after a finite number of steps to a situation
in which the posteriors are common knowledge and hence—by
Aumann’s result—identical (Geanakoplos et Polemarchakis 1982).
In that sense, such a process can be interpreted as a dynamic
foundation of Aumann’s result.

If the Aumann conditions are satisfied on the original set Ω, the
process stops immediately at step 1, or to say it more correctly, will
have reached its absorbing state at step 1.

Important:

What stops a Bayesian dialogue are the “Aumann” conditions.
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Depends on the order

A Bayesian dialog depends on the order in which the two
individuals announce their posteriors (see, for instance,
Polemarchakis 2016). Depending on whether it is individual 1 or
individual 2 who starts the process, the process can end with
different subsets of Ω.

Important:

On each of these two different terminal subsets of Ω, the
“Aumann” conditions hold. The process, so to say, gets “stopped”
by the Aumann conditions. But, on these two different terminal
subsets of Ω, different posteriors attributed to A in common
knowledge might arise.
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An example (in which the order matters, derived from
Polemarchakis, 2016)

Let Ω = {a, b, c , d , e, f , g , h, i , j , k}, with uniform prior,
p(ω) = 1/11,

P1 = {{a, b, c , d , e, f }, {g , h, i , j , k}},
P2 = {{a, b, g , h}, {c , d , i , j}, {e, f , k}},

A = {a, b, i , j , k}, the event of interest; and ω? = a, the true state
of the world.
In matrix representation:

{a?,b} {c, d} {e, f } 1
3

{g , h} {i, j} {k} 3
5

1
2

1
2

1
3

Note that: P1 ∧P2 = {Ω}, and

P1 ∨P2 = {{a, b}, {c , d}, {a, b}, {e, f }, {a, b}, {g , h}, {i , j}, {k}}.
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In this example, the outcome of a Bayesian dialogue depends on
the order in which the two individuals report their posteriors.

If individual 1 starts:

Step 1: Ω(1) = {a, b, c , d , e, f , g , h, i , j , k},
P1,Ω(1) = {{a, b, c , d , e, f }, {g , h, i , j , k}}

q1 =
p({a, b, i , j , k} ∩ {a, b, c , d , e, f })

p({a, b, c , d , e, f })
=

p({a, b})
p({a, b, c , d , e, f })

=
1

3

If individual 1 announces 1/3, then it will become common
knowledge between the two individuals that the true state cannot
belong to the set {g , h, i , j , k}, and therefore this set should be
deleted from what remains in the fund of common knowledge. The
matrix becomes:

{a?,b} {c , d} {e, f } 1
3

1 0 0
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Step 2: Ω(2) = {a, b, c , d , e, f }, P2,Ω(2) = {{a, b}, {c, d}, {e, f }}

q2 =
p({a, b} ∩ {a, b})

p({a, b})
=

p({a, b})
p({a, b})

= 1.

If individual 2 announces 1, then it will be common knowledge
between the two individuals that the true state of the world cannot
be in {c , d , e, f }, and hence this set can be deleted in common
knowledge. The matrix becomes:

{a?,b} 1

1
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Step 3: Ω(3) = {a, b}, P1,Ω(3) = {{a, b}}. Individual 1 announces
also “1,” and the process has reached its absorbing state. Note
that on the set of states that are still alive at step 3,
Ω(3) = {a, b}, the Aumann conditions are trivially satisfied
because the information partitions of the two individuals induced
by Ω(3) = {a, b} are identical: P1,Ω(3) = {{a, b}} = P2,Ω(3).

In this example, the element of the join to which belongs the true
state of the world is also {a, b}. Direct communication will
therefore also lead to a posterior of 1 attributed to A.
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But if individual 2 starts:

Step 1: Ω(1) = {a, b, c , d , e, f , g , h, i , j , k},
P2,Ω(1) = {{a, b, g , h}, {c , d , i , j}, {e, f , k}}

q1 =
p({a, b, i , j , k} ∩ {a, b, g , h})

p({a, b, g , h})
=

p({a, b})
p({a, b, g , h})

=
1

2

→ {e, f , k} can be deleted in common knowledge. But then the
matrix is:

{a?,b} {c , d} 1
2

{g , h} {i, j} 1
2

1
2

1
2

And the process of deletion ends here, with each of them
announcing 1/2 from this moment on, forever.
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If individual 1 starts: If individual 2 starts:

Step 1:
{a?,b} {c , d} {e, f } 1

3

{g , h} {i, j} {k} 3
5

1
2

1
2

1
3

{a?,b} {c , d} {e, f } 1
3

{g , h} {i, j} {k} 3
5

1
2

1
2

1
3

Step 2:

{a?,b} {c , d} {e, f } 1
3

1 0 0

{a?,b} {c , d} 1
2

{g , h} {i, j} 1
2

1
2

1
2

Step 3:
{a?,b} 1

1

50 / 71



Further properties of a Bayesian dialogue

The visible trace of a Bayesian dialogue is the sequence of
announced posteriors.

It can be that at level “nothing happens,” in the sense that each of
the individuals repeats for a certain number of rounds the same
posterior, while in the background, nevertheless, the two
individuals—in common knowledge—successively discard possible
states of the world, namely all those of which it has become
common knowledge, up to that step, that they cannot be the true
state of the world.
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Any regularities in the sequence of announced posteriors stemming
from a Bayesian dialogue?

Polemarchakis (2016) has recently addressed the following
question: Is there any pattern in the sequence of announced
probabilities that stem from a Bayesian dialogue?

Polemarchakis shows that there isn’t: that for any sequence of
numbers strictly between 0 and 1, q1, q2, q3, q4, . . . , qN , one can
find a set Ω of possible states of the world and two partitions such
that that sequence is the visible trace of a Bayesian, or as
Polemarchakis says, a “rational dialogue.”
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Part III

Is it always rational fo speak Bayesian ?
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Suppose that the two individuals appearing in the example above
are two professional chess players who have been thrown into
prison. The director of the prison calls on both of them and
announces:

“Here is Ω, here are your information partitions, here is
the prior p and the event A that we are interested in (all
as defined above in the presentation of Example 2). One
state of the world will materialize and each of you will
receive information according to his or her information
partition. Then, I will ask one of you, in front of the
other: What is the probability that you attribute to the
event A? After his answer, I will ask the other: What is
the probability that you attribute to the event A? After
his answer, I will turn to the first again and ask: Now,
has the event A occurred or not? If his answer is correct,
then both of you will get free. If it is not correct, both of
you will sit for the rest of your lives.”
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The director first calls on individual 2, in front of individual 1, and
asks his posterior. Individual 2 truthfully says “1/2.” The director
then calls on individual 1 to step forward and to report her
posterior. Individual 1 says ...

What do you think that she says?
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The argument

Realize that after individual 2’s announcement (see right-hand
panel in Figure 2, step 2), what is left of Ω and the two
information partitions induced by that set is common knowledge
between the two individuals, which is to say that it is common
knowledge between the two individuals that from this moment
onward, if they were to state their posteriors truthfully, they would
forever be stuck with the answers “1/2” (even if they had as many
more rounds to go as they wanted). However, at a second thought,
there is a way out of that situation.
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Since the original information partitions as well as the
announcement of individual 2, at the first step, are common
knowledge between the two individuals, it is also common
knowledge between the two individuals:

(1) that it is the very announcement of individual 2, at the first
step, that has brought them into this situation in which the
current updated belief of individual 1, whose turn it is now,
has no informational value anymore,

(2) but also that before that—before individual 2’s announcement
of “1/2” and the ensuing reduction of the fund of common
knowledge—the posterior that individual 1 had then did have
some informational value, because it was either 1/3 or 1/5
(see right-hand panel in Figure 2, step 1).
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Imagine that you are individual 2 (the one who the director has
asked first and who will also be asked at the third step) and that in
response to the director’s question to individual 1, at the second
step, you hear individual 1 say: “1/3.” You know that this cannot
possibly be the truthful Bayesian update of individual 1 after you
have made your announcement at the previous step, because you
know that individual 1’s Bayesian update at this step is 1/2, and in
fact this is common knowledge between the two of you. But it is
also common knowledge between the two of you that before your
announcement at the first step, 1/3 was a possible truthful
Bayesian response of individual 1, which corresponds to the fact
that individual 1 has received the information that the true state of
the world belongs to the set {a, b, c , d , e, f } and hence cannot be
in {g , h, i , j , k} (see right-hand panel in Figure 2, step 1).
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Knowing that individual 2 is highly rational (and does not say
“1/3” because she made a mistake in determining her Bayesian
posterior after your announcement), you will probably infer that
this—that at step 1, her Bayesian posterior was 1/3—is precisely
what individual 1 wants to tell you by her announcement of 1/3.
What you do, so to say, is to look for some kind of repair, some
way to reconcile what you observe (which is commonly known not
to be a truthful Bayesian response) with strategically rational
behavior, and you understand that the states in {g , h, i , j , k} can
be discarded from the set of possible states of the world, which
leaves you with {a, b, c , d} as the fund of common knowledge at
this step of your “conversation.” Combining that with your own
information, that the true state belongs to {a, b, g , h}, you
understand that the true state belongs to {a, b} and that the event
A = {a, b, i , j , k} has hence surely occurred. You announce “1,”
and both of you get free.
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Now that was a thought experiment of individual 2 at the last
step. If you are individual 1, you understand that this is the way
that individual 2 will reason. Anticipating this, you as individual 1,
at the second step, announce “1/3.”
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Both philosophers of language and game theorists might cry out
and say: “Sure! But we have long had a name for this!”:

“This is ...

... “a conversational implicature”!

... “forward induction”!
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A linguistic interpretation: a “Bayesian implicature”

In the story above, the profitable deviation from truthfully stating
one’s Bayesian updated belief thrives on the fact that by doing the
deviation, it will become common knowledge that the announced
probability cannot possibly be the speaker’s Bayesian updated
belief that this step; in other words, that she has deviated from the
rule of truthfully stating her Bayesian updated belief at that step.
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Philosophers of language and linguists might recognize in this
movement a conversational implicature (Grice, 1975): the
phenomenon that the meaning of a speech act, here the
announced probability, will be implied by a deviation from some
predefined convention how to talk under normal conditions—what
Grice calls the “flouting” of a conversational maxim.
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Under the name of the “Cooperative Principle,” Grice isolates four
main conversational maxims, “supermaxims,” as he says:

• The maxim of Quantity: “1. Make your contribution as
informative as required (for the current purpose of the
exchange). 2. Do not make your contribution more
informative than is required.”

• The maxim of Quality: “Try to make your contribution one
that is true.”

• The maxim of Relation: “Be relevant.”

• The maxim of Manner: “Be perspicuous.”

Under the category of quality, Grice places two submaxims: “1. Do
not say what you belief to be false.” “2. Do not say that for which
you do lack adequate evidence.” Under the category of manner,
Grice places: “1. Avoid obscurity of expression.” “2. Avoid
ambiguity.” “3. Be brief (avoid unnecessary prolixity).” “4. Be
orderly.”
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In the example above, the maxim flouted can be said to be that of
quality, which here takes the specific form that one ought to
truthfully announce one’s Bayesian updated belief at the current
state of a conversation. In other words, the maxim to truthfully
report one’s Bayesian updated belief at the current state of a
conversation can be seen a submaxim of the supermaxim of
quality. The implicature comes from it being common knowledge
that a deviation from that maxim has occurred because the
probability stated cannot possibly be the speaker’s truthful
Bayesian updated belief at that step. To “flout” a maxim, as Grice
explains, is to “blatantly fail to fulfill it” (49). But what can be a
more blatantly committed offense than one that is committed in
the face of common knowledge? We have here indeed a
mathematically precise manifestation of a communicative
implicature. I propose to call such an implicature that thrives on it
being common knowledge that an expressed belief cannot possibly
be the truthful Bayesian updated belief of the speaker (at the
current state of the conversation), a Bayesian implicature.
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In addition to that one could bring to bear that the implicature
observed in the example above is triggered by a clash of maxims
(Grice 1975, 49). In a situation in which the Bayesian updated
beliefs of the two individuals are already common knowledge (given
the fund of common knowledge Ωt at the current step t),
reporting one’s Bayesian updated belief would amount to making a
perfectly irrelevant speech act. In other words, there is a clash
between the maxim of quality and that of relation. In the example
above, individual 1, when at step 2 she announces her original
posterior, can be said to sacrifice quality in order to save relevance.
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Additional material

Example (Geanakoplos et Polemarchakis 1982; attributed to
Aumann)

In general parametric form, for any n. Here we see the case n = 3.

In matrix form:

{a?, b, c} 1
3

{d} {e, f } 1
3

{g , h} {i} 1
3

1
4

1
4 1
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