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Abstract

Costly-signaling games have a remarkably wide range of applications, from education as

a costly signal in the job market over handicaps as a signal for fitness in mate selection to

politeness in language. While the use of game-theoretic equilibrium analysis in such models

is often justified by some intuitive dynamic argument, the formal analysis of evolutionary

dynamics in costly-signaling games has only recently gained more attention. In this paper,

we study evolutionary dynamics in two basic classes of games with two states of nature,

two signals, and two possible reactions in response to signals: a discrete version of Spence’s

(1973) model and a discrete version of Grafen’s (1990) formalization of the handicap principle.

We first use index theory to give a rough account of the dynamic stability properties of the

equilibria in these games. Then, we study in more detail the replicator dynamics and to some

extent the best-response dynamics. We relate our findings to equilibrium analysis based on

classical, rationality-oriented methods of equilibrium refinement in signaling games.

Keywords: Replicator dynamics, best-response dynamics, index, sequential equilibrium,

equilibrium refinement
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1 Introduction

Can an observable variable of choice like a degree from a good school or an advertisement in a

fancy magazine or—when we look into the natural world—an observable trait like a prominent tail

or elaborate plumage certify some unobservable characteristic like performance, product quality

or reproductive fitness? Theories of costly signaling explain such phenomena in terms of costs

associated to the variable or trait that functions as a signal (Spence 1973, Zahavi 1975). The

problem of costly signaling, in the large sense, is a problem of cooperation: It is the question

whether signaling costs are an effective mechanism to facilitate information transfer—and hence

cooperation—in situations where one player faces uncertainty about the type of the other player,

namely whether the other is “cooperative” (of high quality, high performance, high fitness) or not.

In economics, classical illustrations of costly signaling are education as a costly signal in the

job market (Spence 1973), dividend payments as a signal for a firm’s fundamentals (Miller and

Rock 1985), and advertising as a costly signal for product quality (Milgrom and Roberts 1986).

In biology, costly-signaling games have been used to formalize Zahavi’s (1975) handicap principle

(Grafen 1990), the hypothesis that traits that represent a handicap in relation to the ecologi-

cal problems of the species come to function as a signal for high fitness types in mate selection.

Other natural phenomena for which costly-signaling explanations have been proposed are signals

in predator-prey or respectively parasite-host interaction (Caro 1986, Bergstrom and Lachmann

2001, Archetti 2008), and the begging behavior of offspring as a signal for their need directed to

parents (Godfray 1991, Maynard Smith 1991). In anthropology and sociology, costly-signaling ar-

guments have been suggested as alternative or complementary explanations to reciprocal altruism

in accounting for certain forms of communal sharing and gift-giving (Bliege Bird et al. 2001).

Other puzzling phenomena of social life for which explanations in terms of costly signaling have

been advanced are the practice of inefficient foraging strategies, rituals, and embodied handicaps

(Bliege Bird and Smith 2005). In the study of language, costly-signaling arguments have been

evoked as a frame for politeness in language (van Rooy 2003). Veblen, whose Theory of the Leisure

Class (1899) can be seen as a forerunner of the game-theoretic treatment of costly signaling, points

out a number of social phenomena that can be interpreted as a manifestation of conspicuous con-

sumption or conspicuous leisure, as he refers to the wasteful expenditure of goods and services:

for example, charity, fashion (the wearing of high heels, the cylinder hat, the corset), courteous

manners, a taste for art and culture, or a preference for antiquated forms in language.

The use of game-theoretic equilibrium analysis in such models is often justified by intuitive

dynamic arguments. The formal analysis of evolutionary dynamics in costly signaling games,

however, is relatively unexplored.

In economics, researchers have from the beginning pointed out that models of costly signaling
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typically have multiple equilibria (Spence 1973, Banks and Sobel 1987, Cho and Kreps 1987,

Kreps and Sobel 1994). This has inspired a rich literature on how to assess the plausibility of

equilibria in costly-signaling games—how the Nash equilibrium notion should be refined—in order

to select those equilibria that should be retained as the solution of the game. In this literature,

the plausibility of equilibria has been tested mostly by asking whether players’ beliefs (probability

distributions) over the states of nature (for instance, the high and low productivity type) that

support their equilibrium behavior are reasonable—that is, consistent with Bayes’ law along the

path being played and “plausible” off that path. There is a vivid debate on this in classical game

theory (see, for example, Kohlberg and Mertens 1986, Banks and Sobel 1987, Cho and Kreps

1987, Govindan and Wilson 2009). We will, in chapter 4, give some insight into such methods and

indicate their results for the games studied here.

In biology, the analysis of game dynamics in costly-signaling games has been delayed by a

certain conceptual orientation: the handicap principle has often been interpreted in the strict

sense, namely that the handicapping trait or behavior (the costly signal) shall perfectly reveal

the “good” type (the high fitness, high energy, truly needy type), and its absence, the “bad”

type. In formal accounts of the theory, researchers have therefore often focused on identifying

conditions (parameter specifications of the model) under which perfectly revealing equilibria in

which the “good” type expresses the costly signal and the “bad” type does not and the second

player accepts when the signal has been expressed and does not accept when the signal has not

been expressed—honest signaling equilibria as has been said—exist (Grafen 1990, Maynard Smith

1991). When such an “honest” signaling equilibrium exists, it will be a strict Nash equilibrium.

Strict Nash equilibria are evolutionarily stable strategies. They are asymptotically stable under

any kind of evolutionary dynamics that have been conceived. The question of the study of explicit

evolutionary dynamics therefore seemed answered.

It was only in the second wave of game-theoretic studies of costly signaling in theoretical

biology that researchers argued that the conditions under which “honest” signaling equilibria

exist are for many applications overly restrictive: in discrete models, they require that for the

low type the cost of the signal is at least as high as the benefit that he gets if the second player

takes the desired action—the discrete version of a condition which in economics, for games with

continuous cost and benefit functions, is known as the single-crossing property (see for example,

Kreps and Sobel 1994). It has been pointed out that in standard models, under wide ranges of

fairly plausible parameter specifications (namely that for the bad type the cost of the signal stays

below the benefit that he gets if the second player takes the desired action), there are equilibria

in which the costly signal does not perfectly reveal the good type, because the bad type uses it

also sometimes, which nevertheless induces the second player to take the desired action (accept,

mate) with a least some probability—hybrid equilibria, as they have been called (Bergstrom and
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Lachmann 1997, Lachmann and Bergstrom 1998). Results of this kind have been interpreted as

a critique of the handicap principle, which, on this take, has been identified with the position

that a handicap always has to be perfectly revealing. In that line of study, researchers have

turned to the formal analysis of evolutionary dynamics in costly-signaling games (Huttegger and

Zollman 2010, Wagner 2013, Zollman et al. 2013, Huttegger and Zollman 2016). This literature

has concentrated on bringing the proof that hybrid equilibria, when they exist, do have some form

of local dynamic stability under standard evolutionary dynamic processes. Zollman et al. (2013),

for instance, show that in a discrete version of Spence’s respectively Grafen’s model, the hybrid

equilibrium, when it exists, is surrounded by closed orbits in its supporting 2-dimensional face,

which in turn attracts an open set of nearby states in the replicator dynamics. By aid of computer

simulations, Zollmann and coauthors compare the basin of attraction of this face, under parameter

specifications in which the hybrid equilibrium exists, to the basin of attraction of the “honest”

signaling equilibrium, under parameter specifications in which this last one exists, and find that

the two are similar in size. Such a comparison has to be interpreted with care, because it is to

compare equilibria that exist in two different games (under different parameter specifications in

the same family of games).

A question that so far has received little attention in the study of evolutionary dynamics

in costly-signaling games, is the co-existence of equilibria in the same game (under the same

parameter specification) and hence the equilibrium refinement and selection problem stemming

from this particularity. The co-existence of equilibria in standard costly signaling games, notably

in discrete versions of these games, concerns not so much fully and partially revealing equilibria

(for most parameter specifications either one or the other exists) but equilibria in which the signal

transports some information (fully or respectively partially revealing equilibria) versus equilibria in

which either nobody or everybody uses the costly signal, so-called pooling equilibria, and therefore,

the costly signal (or respectively its absence) transports no information at all.

A second point that has been neglected in the discussion of costly signaling in biology is the role

of the prior probability on the states of nature (the frequencies of types, such as high and low fitness

types) in shaping the equilibrium structure. Researchers have focused on the case that the prior

probability on the good type (its frequency in the population) is low, so low indeed that the second

player a priori would not accept. However, once one writes down a costly-signaling interaction

as a game, a game will be defined for any prior probability distribution over the types, and that

game will have equilibrium solutions—even when the prior on the good type is already high. In

fact, as we will see for the class of games studies here, the game will in this case have multiple

equilibria with quite diverse signaling patterns, reaching from equilibria in which nobody uses

the costly signal, over equilibria in which the high type “imitates” the low type and sometimes

does not use the costly signal, to equilibria in which everybody has to use the costly signal in
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order to make the second player accept with the effect that such a costly signal will transport no

information at all—a social or ecological trap. To our mind, in order to capture the explanatory

potential of costly-signaling games from an evolutionary point of view, one needs to study the

entire equilibrium structure, not only for different values of the cost and benefits parameters but

also for different values of the prior probability of the types (the states of nature), and then, for

each set of fixed parameters, evolutionary dynamics on the entire state space.

In this paper, we give a complete structural analysis of the equilibria and of evolutionary

dynamics in two basic classes of costly signaling games with two states of nature (high and low),

two signals (a costly signal and the absence of that costly signal), and two possible reactions in

response to signals (accept and do not accept):

(I) a game in which the production of the costly signal is of different costs for different types—a

discrete version of Spence’s (1973) model,

(II) a game in which the production of the costly signal is of the same cost for different types,

but types have different benefits if the signal has the desired effect—a discrete version of

Milgrom and Robert’s (1986) model of advertising and Grafen’s (1990) formalization of the

handicap principle.

For each of these classes, we study different specification of the cost and benefit parameters (namely

those that give rise to different equilibrium structures), and within each of the so-defined games,

we distinguish three relevant cases concerning the prior probability. We first make use of the

theory of the index of equilibria (Shapley 1974, Hofbauer and Sigmund 1988, 1998, Ritzberger

1994, 2002, Demichelis and Ritzberger 2003) to give a rough account of evolutionary dynamics in

these games. Then, for each of these classes, we study in more detail the replicator dynamics and

to some extent the best-response dynamics.

Why focus on such basic discrete games? First, because they are empirically relevant. In life,

many signaling problems boil down to such a simple binary structure. Discrete signals are easier

to discern, and often reactions are conditioned just on whether such a discrete costly signal has

been expressed or not: Does the candidate have a degree from a certain school or not? Is a certain

handicapping trait or behavior displayed or not? Is a certain polite form used or not? Similarly,

the actions that the signal aims to precipitate are often binary in nature too: hire or not, buy or

not, mate or not. In many applications, anyway, even if the game is defined with a continuous

signaling space and continuous reaction functions to signals, in equilibrium, it eventually breaks

down to a binary structure, where all that matters is if the level of signaling is above or below a

certain threshold. Second, such simple binary games are an important theoretical reference point.

Games with two signals, two states of nature, and two possible reactions to signals provide a

basic grammar of signaling games—a simple model in which one can see in pure, minimal form
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phenomena that arise in more complex models, in which it might be harder to discern which

property of the solution is driven by which assumption. In applications involving richer signaling

structures, in order to make the model tractable, researchers often focus on a specific class of

equilibria—most importantly perfectly revealing equilibria—and leave unexplored the existence

of other kinds of equilibria. The simple, binary games that we consider, instead, allow us to

analyze the entire equilibrium structure—making it possible to see in a clear-cut way under which

conditions which kind of equilibria can exist, and how the structure of equilibria changes as a

function of changes in the basic parameters of the model.

2 The model

Costly-signaling theory begins with a problem of cooperation—a problem of cooperation under

uncertainty. A player (the hiring firm, the potential buyer, the female) in principle wants to

conclude an exchange with some other player (the job candidate, the firm offering its stock or a

product, the male), but only if that other player is by nature of a certain type, namely, of high

productivity, high quality, high performance, high fitness, ... Unhappily, the type of that other

player (the state of nature) is not directly observable. Therefore, the player under consideration

cannot condition her choice whether to accept the proposed exchange or not (hire, buy, mate) on

the other player’s type. Surely, given the gains from accepting or not as a function of other player’s

types, whether the player under consideration should accept or not depends on the probability

that she attaches to the other player’s type. The probability of types is assumed to be given by the

environment. It might, of course, be determined by some other ecological game, but it is treated

here as a parameter of the model. In our model, for simplicity, we assume that when the other

player is of the “good” type (high productivity, high quality, high fitness), then the player under

consideration, if she accepts, will have a payoff of 1, and if she does not accept, a payoff of 0; and

the other way round if the other player is of the “bad” type: 0 if she accepts and 1 if she does not

accept. Figure 1 represents that situation. For given payoffs, there will be a critical probability

p of the “good” type below which the player under consideration should not accept and above

which she should accept. For the payoffs that we assume, this critical probability will be 1/2. So

far then, this is a simple problem of choice under uncertainty, or a game against nature.

One realizes what the tragedy emanating from such a game against nature might be: the other

player (the job candidate, the firm offering its stock or a product, the male) might effectively be

of the good type (and know this), but if the frequency of that type in the population is too low,

the right choice of the player under consideration (the hiring firm, the potential buyer, the female)

might be not to accept. Cooperation might not take place due to an informational problem in the

society. In the situation depicted in Figure 1, this happens when p < 1/2.

7



Nature
PPPPPPPP

��������

p: high type (1− p): low type

A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�
�
�
�
��

�
 �	Player 2�
 �	Player 2

•

• •

a ā a ā
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Figure 1: A social identification problem: a game against nature

In economic life the phenomenon can frequently be observed: in some regions (for instance,

regions shaken by political or social crisis) investments might not take place because the expec-

tations that the returns are good are, on average, too low. Akerlof (1970) has famously referred

to this as the problem of “the market of lemons” (“lemon” for bad used car): Suppose a price

corresponding to the average quality is payed. Owners of high quality cars know that their car is

worth more than the price they could get by selling it in the market. They might therefore refrain

from selling it, with the effect that only low quality cars will be in the market, possibly with a

quality so low, that nobody wants to buy, and hence the market stays closed.

What could be a mechanism that lifts players out of such a situation of no exchange, no trade,

no cooperation arising from an informational problem?

–Signals? Imagine that the player whose type is unknown can emit a signal, that is, take some

action or express some trait that can be observed by the player who decides whether to accept or

not. This transforms the model into a situation of strategic interaction, a game in the nontrivial

sense, because the player who has to decide whether to accept or not can now condition this

decision on observation of that signal. Figure 2 represents the sequential structure of such a game

by a tree.

In the game tree in Figure 2, and in what follows, the player about whose type there is

uncertainty and who can send a signal—because he is the one who moves first—is referred to as

player 1 ; and the player who observes the signal and then has to decide whether to accept or

not as player 2. The uncertainty about the type of player 1 (the state of nature) is represented

by a move of Nature at the root of the tree. Nature makes her move with probability p for the

high type and 1− p for the low type. Each of player 1’s types (high and low) can emit the signal

s or not (indicated by s̄). Player 2, before she makes her move, observes whether player 1 has
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Figure 2: Giving player 1 the possibility to express a signal transforms the situation into a game

in the nontrivial sense. Here is is assumed that expressing the signal is of no cost.

emitted the signal s or not, but a priori she still does not know of which type player 1 is. This is

indicated in the game tree by gathering the node after high type and s and the node after low type

and s in an oval, which represents an information set of player 2—nodes of the tree that player

2 cannot distinguish the moment she is called to make a move. And similarly for the nodes after

the absence of the signal. After the signal or respectively its absence has been observed, player 2

makes her move, that is, either accepts (a) or not (ā).

A game tree alone does not define a game. To define a game, at each end node of the tree,

payoffs for the players have to be specified. Once an end node is reached, payoffs materialize.

Following standard convention, at each end node of the tree, payoffs are indicated with the first

number giving the payoff of player 1, and the second that of player 2.

In Figure 2, the payoffs of players have been specified under the preparatory assumption that

expressing the signal is of no cost for player 1, no matter what his type. Considering this situation

first is instructive to understand the role of signaling costs. One quickly verifies that if signals

are of no cost, with the payoffs from the identification problem in Figure 1 in the backdrop, the

possibility to send a signal does not enable the players in the model to escape the unfortunate

situation of no exchange if the prior probability on the good type is low. To see why, assume that

in fact only the good type uses the signal s and that player 2 at observing the signal accepts, and

in the absence of the signal does not accept. If this were so, then the bad type of player 1 would

also be better off using the signal, and hence this assignment of behavioral strategies cannot be

an equilibrium in the population. The argument is intuitive: if talk is cheap, player 1 will always

say “I am of the good type”: “Yes, I am highly motivated.” “Sure, if you make me an offer, I will

take the job.” As Spence (1973) remarked: “If the incentives for veracity in reporting anything by
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Figure 3: Class I: at the top, the game given by a tree—the game in extensive form; at the bottom:

the matrix game resulting from that extensive-form game.

means of a conventional signaling code are weak, then one must look for other means by which

information transfers take place.” Spence’s fertile idea was to look at the effect of signaling costs.

2.1 Class I: different costs of producing the signal

In class I, a discrete version of Spence’s (1973) model, it is the very production, or expression, of

the signal s that is of different costs for the two types of player 1.1 Following Spence’s original

idea, it is assumed that for the high type it is less costly to produce the costly signal than for the

low type. We assume that 0 ≤ c1 < 1 and c1 < c2, where c1 is the cost of the signal for the high

type and c2 that of the low type, and that these costs are deducted from the background payoffs

for the two types that are depicted in Figure 2. This gives the game in Figure 3.

For the game in Figure 3, a strategy for player 1 is a plan of action whether to emit the costly

signal or not, that is, take s or s̄, as a function of his type; and a strategy for player 2 is a plan of

action, a or ā, conditional on which signal she has observed. Each player then has four possible

pure strategies:

1In Spence’s model, the space of signals (the level of education) and the space of possible reactions to signals

(the offered wage) are continuous. In equilibrium, Spence’s model breaks down to a discrete signaling structure

where a certain level of education stands for the high type.
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Pure strategies for player 1: Pure strategies for player 2:

ss: If high, then s; if low, then s aa: If s, then a; if s̄, then a

ss̄: If high, then s; if low, then s̄ aā: If s, then a; if s̄, then ā

s̄s: If high, then s̄; if low, then s āa: If s, then ā; if s̄, then a

s̄s̄: If high, then s̄; if low, then s̄ āā: If s, then ā; if s̄, then ā

Players’ strategies can also be mixed, that is, in terms of a probability distribution over their

respective set of pure strategies. We write x(ss), x(ss̄), etc., for the probability attributed by a

mixed strategy x to the pure strategies ss, ss̄, etc. And similarly for player 2, using y.

Given the sequential structure of the game (as represented by the game tree in Figure 3),

there is however a different way of interpreting mixed strategies: Every mixed strategy induces

at least one so-called behavior strategy, that is, a plan of action that gives for every node or

information set of the respective player a probability distribution over the actions that he or she

has available there. A behavior strategy for the first player is, for instance: “If you happen to be

of the high type, send the costly signal s with a probability of 60% (and do not send it with the

complementary probability of 40%); if you happen to be of the low type, do not send the costly

signal.” This particular behavior strategy, obviously, is induced by a mixed strategy of ss̄ and

s̄s̄, with a probability of 60% on the first and 40% on the second. A behavior strategy for the

second player is, for instance: “If you see the costly signal s, take a for sure; if you do not see

it, take a with a probability of 50%,” which is induced by a mixed strategy of aa and aā with a

probability of 50% on each of them. The two games—the one based on mixed strategies defined

on complete contingent pure strategies and the other based or behavior strategies—are, at least as

what concerns the existence of Nash equilibria, equivalent (Kuhn 1950, 1953). We denote behavior

strategies as follows:

Behavior strategies for player 1: Behavior strategies for player 2:

(xh, x`): xh prob. with which high type uses s, (y, y′): y prob. with which 2 takes a after s,

(xh, x`): x` prob. with which low type uses s (y, y′): y′ prob. with which 2 takes a after s̄

A profile of behavior strategies then can be denoted in the form (xh, x`, y, y
′). This allows us to

represent strategy profiles in the [0, 1]4 cube—the hypercube (see Figures 7, 8, 9).

Nash equilibria in the matrix game

The standard approach to solve games with uncertainty is by Bayesian Nash equilibrium (Harsanyi

1967), an extension of Nash’s (1950, 1951) equilibrium concept to games under imperfect infor-

mation, which operates on the assumption that players evaluate payoffs as expected payoffs given

the probabilities of the states of nature. Under this assumption, the normal form of the game—
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the game matrix—can be derived by considering all 4 × 4 combinations of pure strategies and

evaluating the payoffs of players at the end nodes of the paths induced by the respective strategy

combination, weighted by the probabilities with which these end nodes will be reached, given the

prior probability on the states of nature. The Bayesian Nash equilibria of the game then are the

Nash equilibria of the game given by that payoff matrix and can be determined in the usual way

by searching for strategy combinations such that the strategy of one player is a best response to

the strategy of the other player (the usual Nash-equilibrium condition).

Sequential Bayesian Nash equilibria in the extensive form—the tree representation—

of the game

In the Nash equilibria of the matrix game, the sequential structure of the game—and how players

might reason about it—has been lost, or is only implicitly present. When one translates the

equilibrium strategies into behavior strategies, one can however check if players’ choices of actions

respect some sequential logic.

For a game given by a tree, a sequential Bayesian Nash equilibrium (Kreps and Wilson 1982) is

a profile of behavior strategies, one for each player, together with a vector of beliefs (a probability

distribution) over the states of nature, namely one for every node or information set of the game

tree, such that:

(1) players’ choices of actions at the nodes or information sets where they potentially come to

move are a best response to (i) the beliefs over the states of the nature assigned to that node

or information set and (ii) the other players’ actions as given by their behavior strategies

from that node onward, and

(2) the beliefs assigned to nodes or information sets are compatible with Bayes’ law along the

path being played, given the prior probability distribution p over the states of nature and

players’ equilibrium strategies.2

For the game tree in Figure 3, the two players will be in a sequential Bayesian Nash equilibrium if

one player’s plan of action (expressed as a behavior strategy) is a best response to the other player’s

2Kreps and Wilson (1982), in their definition of sequential Bayesian Nash equilibrium, require also that beliefs

off the equilibrium path (a node or information set never reached in the equilibrium under study) be consistent in

the sense that they can be deduced from Bayes’ law after a small perturbation of the behavior strategies. It is easy

to see that for signaling games as we consider them here, the condition is always fulfilled: let (p, 1−p) be the initial

prior for (high, low). Suppose that in equilibrium a specific signal is never sent. Let (p∗, 1− p∗) be player 2’s belief

off the equilibrium path when she receives that signal. Suppose that player 1 perturbs his behavior strategies as

follows: the high type sends the signal which in the original equilibrium outcome is never used with probability

ε(1 − p)p∗, where ε is very small, and the low type sends this signal with probability εp(1 − p∗). By Bayes’ law,

the updated belief is (p∗, 1− p∗).
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plan of action, and the second player’s plan of action is consistent with Bayes’ law along the path

being played, that is, if the second player’s decision to take a or ā when she comes to move in

any of her information sets is a best response to the belief about the first player’s type attributed

to that information set and if, in case that the information set is effectively reached along the

path defined by the equilibrium strategies, the belief about the first player’s types results from

a Bayesian update of the prior probability p (given the probabilities with which the first player

uses s or respectively s̄ as a function of his type as prescribed by his equilibrium strategy). One

recovers the typical “static” nature of Nash equilibrium here: the second player has to behave as

if she updated her prior belief as if she knew the first player’s strategy (that is, the probabilities

with which the first player takes action a depending on his type), and the first player has to make

his choice based on his expectations how the second player reacts to which signal. But how the

players come to know these probabilities is not part of this equilibrium concept.

For games without moves of nature, sequentiality means subgame perfectness (Selten 1965,

1975), the requirement that a Nash equilibrium for the entire game has to induce a Nash equi-

librium in every subgame (branch of the tree)—a notion which is usually considered as capturing

the idea of backward induction for games of imperfect information.

2.2 Parameter specifications—a family of games

Which equilibria a game under imperfect information has, no matter if one looks at it in the matrix

or the extensive form, depends on the value of the prior probability on the states of nature—here

given by p, the prior probability on the high type. For the game in Figure 3, no matter what the

values of c1 and c2, three cases are relevant: p < 1/2, p > 1/2, and the knife-edge case p = 1/2.

Why is p = 1/2 critical? This comes from the decision problem of player 2: 1/2 is the probability

that player 2 has to attach to the high type, at the moment of making her choice, in order to be

indifferent between a and ā. Since use of the signal induces no costs for player 2, the probability

1/2 will be critical no matter which signal player 2 has observed. For the parametrized version

of the game that we consider, the equilibria depend of course also on the specific values of c1 and

c2. In the following, we distinguish first three paradigmatic cases concerning the cost parameters,

and then, within each of these, we distinguish the three relevant cases concerning p.

Class I, case 1: 0 ≤ c1 < c2 < 1: Nash equilibria in the matrix game

• If p < 1
2 , there is:

E1: an equilibrium in which player 1 mixes between ss and ss̄ with a probability of p
1−p

on the first (and 1− p
1−p on the second) and player 2 mixes between aā and āā with a

probability of c2 on the first (and 1− c2 on the second), and
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P1: an equilibrium component in which player 1 takes s̄s̄, that is, both types of player 1

take s̄, and player 2 mixes between aā and āā with some probability in [0, c1] on the first

(and the complementary probability on the second). Equilibria of this form, in which

all types use the same signal, are sometimes referred to as pooling equilibria (hence the

name P1).

• If p > 1
2 , there is:

E2: an equilibrium in which player 1 mixes between ss̄ and s̄s̄ with a probability of 1− 1−p
p

on the first and player 2 mixes between aa and aā with a probability of 1 − c1 on the

first,

P2: an equilibrium component in which player 1 takes ss and player 2 mixes between aa

and aā with some probability in [0, 1− c2] on the first, and

P3: an equilibrium component in which player 1 takes s̄s̄ and player 2 any mix between aa

and āa.

• In the knife-edge case p = 1
2 , there is:

E1’-P2: An equilibrium component in which player 1 takes ss and player 2 a mixed strategy in

the 3-dimensional polyhedron determined by y(aā) ≥ y(āa)+c2. In other words, E1’-P2

is spanned by the four vertices ss×y with y = (0, 1, 0, 0), (1−c2, c2, 0, 0), (0, c2, 0, 1−c2),

and (0, 1 + c2, 1− c2, 0)/2.

P1-E2’-P3: An equilibrium component in which player 1 takes s̄s̄ and player 2 a mixed strategy in

the triangular frustum, determined by y(aā) ≤ y(āa) + c1. In other words, P1-E2’-P3

is the convex hull of the six vertices s̄s̄× y with y = (1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) at

the base and y = (1− c1, c1, 0, 0), (0, c1, 0, 1− c1), (0, 1 + c1, 1− c1, 0)/2 at the top.

Each of these Nash equilibria in the game matrix has a translation into behavior strategies (relative

to the game tree in Figure 3) in which it appears as a sequential Bayesian Nash equilibrium—which

we show below.

Class I, case 1: 0 ≤ c1 < c2 < 1: Sequential Bayesian Nash equilibria

• p < 1
2 :

E1: In terms of behavior strategies, E1 translates to (1, p
1−p , c2, 0): the high type uses the

costly signal s for sure, the low type with probability x` = p
1−p , and player 2, in case

that she has observed s, takes a with probability y = c2, and in case that she has not

observed it, does not take a (takes ā for sure). It is straightforward to check that this

profile of behavior strategies is compatible with the requirement that players update
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their beliefs along the path being played by Bayes’ law: Given that the high type always

uses s, the probability x` = p
1−p with which the low type uses s is precisely such that

at observation of s, player 2’s Bayesian updated belief p∗s will be 1/2:

p∗s = p(h | s) =
p

p+ (1− p) · x`
=

1

2
⇐⇒ x` =

p

1− p .

At this belief, player 2 is indifferent between taking a and ā and hence ready to mix

between the two, which is what she effectively does at observation of s in the equilibrium

under study. At observation of s̄, player 2’s updated belief of the high type, if she

updates her prior belief according to Bayes’ law given player 1’s behavior strategy, will

be 0, and to this belief, there is a unique best response, namely not to accept (take

ā), which is what she does in the equilibrium under study. In turn, given that in the

absence of the costly signal, player 2 takes ā for sure, player 2’s choice after s to take a

with probability y = c2 is precisely such as to make the low type of player 1 indifferent

between s and s̄, which is needed to make this type be willing to use a mix between the

two, which is what he does in the equilibrium under study; while the high type is strictly

better off using s, which is what this type does in the equilibrium under study. In this

equilibrium, the absence of the costly signal (s̄) fully reveals the low type, whereas the

presence of the costly signal s does not fully reveal the high type but still pushes player

2’s belief that player 1 is of high type (which a priori is below 1/2) up to precisely 1/2.

We refer to this kind of equilibrium, in which one signal fully reveals one type, as a

partially revealing equilibrium. Figure 4 illustrates how this equilibrium and the beliefs

that support it unfold in the game tree. In Figure 7, one can see its position in the

space of behavior strategies represented by the hypercube: it is an isolated equilibrium

point that sits in the 2-dimensional face given by (1, ∗, ∗, 0).

P1: In terms of behavior strategies, the component P1 translates to (0, 0, y, 0), y ∈ [0, c1]:

player 1 never uses the costly signal, no matter what his type; player 2, in case that she

observes the costly signal s, takes a with a probability not higher than c1, and when

she does not observe it (observes s̄), will not accept (take ā). In the game tree, any

point in this component maps to the same outcome, that is, probability distribution

over end nodes: the node after high type – s̄ – ā will be reached with probability

p, and the node after low type – s̄ – ā will be reached with probability 1 − p. It is

straightforward to check that any point in P1 can be sustained as a sequential Bayesian

Nash equilibrium: After s̄, given that both of player 1’s types use s̄, the updated belief

is the same as the prior belief, p∗s̄ = p < 1/2, and therefore player 2, if she responds

optimally to her beliefs, has to choose ā. In the event that player 2 observes s, which

actually never happens in the equilibrium outcome under study—game theorists refer
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to this as a situation off the equilibrium path—Bayes’ law is not defined, and so imposes

no restrictions. To make player 2’s choice of taking a with a probability y ∈ [0, c1] in

the counterfactual event that s is observed compatible with sequential Bayesian Nash

equilibrium, it suffices therefore to find some belief (probability distribution over the

types) for which taking a with a probability y ∈ [0, c1] is a best response. There are

actually many such beliefs: for any belief on the high type strictly smaller than 1/2, the

best response will be to take a with 0 probability; if the belief after s is equal to 1/2,

then player 2 will be indifferent between a and ā, and so taking a with some y ∈ [0, c1]

will be good. What is not compatible with this equilibrium outcome are beliefs after

s that attribute to the high type a probability strictly higher than 1/2, because then

player 2 would have to take a for sure, and that would upset the equilibrium (because

then both types would want to use s instead of s̄). Figure 5 illustrates this equilibrium

outcome and the beliefs that support it in the game tree. In Figure 7, one can see

its position in the space of behavior strategies: it is an equilibrium component that

reaches from (0, 0, 0, 0) to (0, 0, c1, 0), the point marked -P1 in the figure. For the case

that c1 = 0, the component is reduced to the point (0, 0, 0, 0).

• p > 1
2 :

E2: translates to (1 − 1−p
p , 0, 1, 1 − c1), a partially revealing equilibrium that is the mirror

image of E1: the high type uses the costly signal s with probability xh = 1− 1−p
p and

does not use it with probability 1−p
p , while the low type never uses the costly signal

(takes s̄ for sure), which is such that player 2 in the absence of the costly signal will

have an updated belief p∗s̄ that will make her indifferent between a and ā:

p∗s̄ =
p · (1− xh)

p · (1− xh) + (1− p) =
1

2
⇔ 1− xh =

1− p
p

.

Player 2, if she observes the costly signal s, will choose a for sure (which will be a best

response to her updated belief p∗s = 1), and if she does not see it, will choose a with

probability y′ = 1 − c1, which is the probability that will make player 1’s high type

indifferent between using and not using the costly signal, while ensuring that not using

the costly signal is a best response for player 1’s low type. In this equilibrium, the costly

signal s fully reveals the high type. The absence of the costly signal (s̄) instead does

not fully reveal the low type, but—and again this is the mirror effect of what s does in

E1—will bring player 2’s belief down to p∗s̄ = 1/2.

P2: translates to (1, 1, 1, y′), y′ ∈ [0, 1− c2]: both types of player 1 use the costly signal s;

player 2, when she observes s, will have the same belief as her prior belief, p∗s = p > 1/2,

and will therefore accept, and in the absence of the signal, which will be “off the
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equilibrium path,” either believes that player 1 is of the high type with a probability

of less than 1/2, in which case she will choose ā, or believes that 1 is of the high type

with a probability of 1/2 and will choose a with a probability y′ ∈ [0, 1− c2], which will

be low enough to prevent player 1’s low type, and a fortiori player 1’s high type, from

deviating from s.

P3: translates to (0, 0, y, 1), y ∈ [0, 1]: player 1 never uses the costly signal, no matter what

his type, and player 2, in the absence of the costly signal, will have the same belief as

her prior belief, p∗s̄ = p > 1/2, and hence will choose a, and in case that the costly

signal has been sent, which will be “off the equilibrium path,” can have any belief and

best respond to it.

Figure 8 shows E2, P2, and P3 in the hypercube.

• p = 1
2 :

E1’-P2: translates to a 2-dimensional set of behavior strategies, an isosceles right triangle,

spanned by (1, 1, 1, 0), -P2= (1, 1, 1, 1− c2), and E1’ = (1, 1, c2, 0) (see Figure 9). That

is, player 1 always uses s no matter what his type, and player 2, when she observes s,

will have the same belief as the prior 1/2 (will hence be indifferent between a and ā) and

will take a with some probability y ∈ [c2, 1], and in response to the off-the-equilibrium-

path signal s̄ will take a with some probability y′ ∈ [0, y − c2], which guarantees that

both types of player 1 have no incentive not to use s. For example, when y = c2, then

y′ = 0 (similarly as in E1); when y = 1, then y′ ∈ [0, 1 − c2] (as in P2). In the game

tree this gives a continuum of outcomes in which both types use s with one outcome

differing from another only in the reaction of player 2 to s.

P1-E2’-P3: translates to a 2-dimensional set of behavior strategies spanned by (1, 0, 0, 0), -P1=

(0, 0, c1, 0), and E2’ = (0, 0, 1, 1 − c1), (0, 0, 1, 1), and (0, 0, 0, 1) (see Figure 9). That

is, player 1 always uses s̄ (never uses the costly signal), no matter what his type, and

player 2, when she does not observe the costly signal, will have the same belief as her

prior belief 1/2 and will take a with some probability y′ ∈ [0, 1], and in response to

the off-the-equilibrium-path signal s will take a with some probability y ∈ [0, y′ + c1]

if y′ + c1 ≤ 1 and with some probability y ∈ [0, 1] if y′ + c1 > 1. For example, y′ = 0

is supported by any y ∈ [0, c1] (as in P1); y′ = 1− c1 by any y ∈ [0, 1] (similarly as in

E2); and y′ = 1 by any y ∈ [0, 1] (as in P3). In the game tree this gives a continuum

of outcomes in which both types use s̄ with one outcome differing from another only in

the reaction of player 2 to s̄.
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Figure 4: Class I, 0 ≤ c1 < c2 < 1, p < 1
2 : partially revealing equilibrium E1: player 1 mixes

between ss and ss̄ with p
1−p on the first, player 2 between aā and āā with c2 on the first.
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s̄s̄, and 2 mixes between aā and āā with y ∈ [0, c1] on first.
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Class I, case 2: 0 ≤ c1 < c2 = 1: Nash equilibria in the matrix game

As case 1 only with the following substitutions:

• p < 1/2: E1 is replaced by

E*-E1: an equilibrium component in which 1 mixes between ss and ss̄ with some probability

in [0, p/(1− p)] on the first and 2 takes aā.

• p ≥ 1/2: P2 respectively E1’-P2 is replaced by

E*-E1’-P2: an equilibrium component in which 1 takes any mix between ss and ss̄ and 2

takes aā.

Class I, case 2: 0 ≤ c1 < c2 = 1: Sequential Bayesian Nash equilibria

• p < 1
2 : E*-E1 translates to (1, x`, 1, 0), x` ∈ [0, p

1−p ], an equilibrium component reaching

from a fully revealing equilibrium E* (x` = 0) to a partially revealing equilibrium like E1.

In any point belonging to this component, player 1’s high type uses the costly signal and

player 1’s low type uses it with some probability x`, sufficiently low (possibly 0), such that

if player 2 observes the costly signal, her updated belief p∗s will guarantee that choosing a is

a best response, which will be the case if:

p∗s =
p

p+ (1− p) · x`
≥ 1

2
⇐⇒ 0 ≤ x` ≤

p

1− p .

In any point belonging to this component, the absence of the costly signal (s̄) will fully reveal

the low type, and hence player 2’s best response is unique: ā. Given player 2’s behavior strat-

egy, player 1’s high type is strictly better off using s and the low type is indifferent between

a and ā. In the game tree, this component gives a continuum of equilibrium outcomes.

• p > 1
2 : E*-E1’-P2 translates to (1, x`, 1, 0), x` ∈ [0, 1], a component reaching from a fully

revealing equilibrium E* (x` = 0), over partially revealing equilibria similar to E1, to an

equilibrium in the style of P2 in which both types use s (x` = 1). In any point belonging

to this component, after s, the updated belief is strictly above 1/2: taking a therefore is the

best response. For any x` < 1, s̄ fully reveals the low type, and therefore ā is the unique

best response to s̄. When x` = 1 (P2), the updated belief after s will be the same as the

prior, and because this is above 1/2, taking a will be the unique best response. This point

is supported by beliefs that put a probability of at least 1/2 on player 1’s low type after s̄.

Class I, case 3: 0 ≤ c1 < 1 < c2: Nash equilibria in the matrix game

As case 1 only that E1, P2, and E1’-P2 are replaced by

E*: a perfectly revealing equilibrium in which player 1 takes ss̄, and player 2 aā.
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Class I, case 3: 0 ≤ c1 < 1 < c2: Sequential Bayesian Nash equilibria

E*: translates to (1, 0, 1, 0), a perfectly revealing equilibrium in which the high type uses s and

the low type s̄, and player 2 in reaction to s takes a and in reaction to s̄ takes ā. The

Bayesian update is trivial here: observation of s sets the belief to 1, s̄ to 0. Each signal fully

reveals one of the two types.

2.3 Properties of the equilibrium structure

A couple of observations are in place:

• The “honest” perfectly revealing or, as economists say, perfectly separating equilibrium E*,

in which the high type uses the costly signal and the low type does not, and player 2 accepts

if the costly signal has been expressed and does not accept if the costly signal has not been

expressed, does not always exist. Whether it exists or not depends on the cost of the signal

for the low type: for E* to exist, the cost of the signal for the low type has to be at least as

high as the benefit that he gets if player 2 accepts, that is, c2 ≥ 1. This reflects a condition

for continuous games, which in the economics literature is known as the single-crossing

property (see, for example, Kreps and Sobel 1994). In the literature in theoretical biology,

this observation has sometimes been expressed by saying that it is the “cost of cheating”

that sustains honest communication (see, for instance, Számadó 2011). Note in particular

that even if the signal is of no cost at all for the high type, c1 = 0, but of some cost c2 < 1

for the low type, a perfectly revealing equilibrium will still not exist. In the extreme case

that c1 = 0 and c2 ≥ 1, and E* obtains, then—though it is the cost of the signal s for the

low type which makes that s, respectively its absence, perfectly reveals the type—actually

nobody pays anything for expressing the signal: the high type expresses s, but it does not

cost anything to him, and the low type does not express it.

• When c2 is such that E* exists (c2 ≥ 1), then it exists for any prior p (whereas the existence

of other equilibria, E1, P1, E2, P2, and P3, depends on the prior).

• Even if E* exists (c2 ≥ 1), for any prior, there are also other equilibria, notably equilibria

in which nobody expresses the costly signal and the second player acts on her prior belief—

no-signaling equilibria as one might say.

• Except for the case c2 = 1, the perfectly revealing equilibrium E* and the partially revealing

equilibrium E1 do not co-exist in the same game (that is, for a fixed set of parameters

of the model: c1 and c2, and p) but in different games. Only when c2 = 1, will E* and

equilibria of the form E1 co-exist in the same game. But then they will belong to the same

equilibrium component. Structurally, E* and E1 represent the same equilibrium component
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in different games belonging to the same family of perturbed games (see the analysis of the

index of equilibria in section 3). Their properties—notably their stability under evolutionary

dynamics—have to be evaluated in comparison to other equilibria that exist in the same

game.

On the basis of Bayesian Nash equilibrium (no matter if one looks at it as the Nash equilibria

in the game matrix or as the sequential Bayesian Nash equilibria in the game tree in Figure 3),

all equilibria are equally good predictions of the model. This raises the question whether one

shouldn’t demand more from a good prediction of the model than being a Nash equilibrium? In

the following section, we approach this question by evolutionary dynamics.

3 Evolutionary dynamics

In an evolutionary context, Nash equilibria are interpreted as equilibria in a population of players.

Games with two players are understood as models of interaction between two different popula-

tions; for example, male and female or predator and prey. Each player position then represents a

population of individuals. If a player can be of two different types, these types represent subpopu-

lations of the respective population with the frequencies given by the prior probability distribution

of types. A state of the two-population system corresponds to a distribution of strategies for each

of the player positions representing a population.

What matters for an equilibrium to be a good prediction of the model from an evolutionary

point of view is whether the corresponding state of the system is resistant against evolution-

ary shocks, that is, drift when variation on the level of strategies is already present, and newly

appearing variation in the form of mutant strategies.

Theorists have approached the question of evolutionary stability on three different levels : (1)

comparative static criteria, as Maynard Smith and Price’s (1973) notion of evolutionarily stable

strategy (ESS), which rely on payoff comparisons between mutant and resident strategies; (2)

the study of specific evolutionary dynamic processes defined on the respective game—a research

program that has aimed to establish relations between static ESS criteria and stability properties

of the associated fixed point under specific dynamic process (Taylor and Jonker 1978, Hofbauer

et al. 1979, Hofbauer and Sigmund 1988, 1998), and finally (3) qualitative dynamic stability

properties of equilibria under a wider range of dynamic processes based on topological properties

of the respective equilibrium component, an approach related to index theory.
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3.1 The index of equilibria: a rough guide to evolutionary stability

Already Shapley (1974), in his description of the Lemke-Howson algorithm, associated an index

(+1 or −1) to each regular equilibrium3 with the following properties:

(1) Every strict equilibrium has index +1.

(2) Removing or adding unused strategies does not change the index of a regular equilibrium.

(3) The sum of the indices of all equilibria, if they are all regular, is 1. This is often referred to

as the index theorem, which implies the odd number theorem: In generic games, the number

of equilibria is odd.

In Hofbauer and Sigmund (1988, 1998) an alternative approach to the index is given, based on

the replicator dynamics and Brouwer’s degree theory. Here the index of a regular equilibrium is

the sign of the determinant of the negative Jacobian matrix.

Ritzberger (1994, 2002) has extended this approach and defines the index of components of

Nash equilibria. Recall that in a finite game (finitely many players, each mixing among finitely

many pure strategies), the set of Nash equilibria is semialgebraic, and hence consists of finitely

many connected components. An index (which can now be an arbitrary integer) can be associated

to any of these components, such that the sum over all components is again +1. This index is

robust against payoff perturbations, in the following sense: Let C be a component and U an open

neighborhood of C, such that there is no equilibrium on the boundary of U . A perturbation of

the payoffs will in general change C. Now, let Cε be the set of all equilibria of the perturbed

game that lie in U (we assume that the perturbation is small enough, so that again no perturbed

equilibrium lies on the boundary of U). This Cε need not be connected, but it is the finite union

of connected components Cε
1 , . . . , C

ε
k. Brouwer’s degree theory then implies that the sum of the

indices of Cε
1 , . . . , C

ε
k equals the index of C. It might happen that Cε is empty—but only if C has

index 0. Using these simple properties, one can easily compute the index of any Nash equilibrium

component.

For practical matters, there are three efficient ways to determine the index of an equilibrium

component or a degenerate, that is, nonregular, equilibrium:

(a) Perturb the game so that all perturbed equilibria are regular: the index of an equilibrium

component of the original game is then the sum of the indices of the corresponding nearby

equilibria in the perturbed game—the robustness property of the index.

(b) Use the index theorem (if the indices of all other components are known). And finally:

3In a 2-person game, an equilibrium is regular if and only if it is isolated and quasistrict (unused strategies do

strictly worse).
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(c) If an equilibrium component C is asymptotically stable for some evolutionary dynamics,

then its index equals its Euler characteristic.

The last property, which is of particular interest here because it establishes the connection to

evolutionary dynamics, is given by a beautiful theorem by Demichelis and Ritzberger (2003). An

important special case is: If an equilibrium component is convex or contractable (for example, a

singleton) and asymptotically stable under some reasonable dynamics, then its index is +1.

In class I, case 1, 0 < c1 < c2 < 1:

• When 0 < p < 1
2 , the partially revealing equilibrium E1 is an isolated and quasistrict—

hence regular—equilibrium in which both players mix between two strategies. Omitting

the strategies that are unused at this equilibrium leads to a cyclic 2 × 2 game, similar to a

matching pennies game. E1 is the only equilibrium in this restricted game. By the index

theorem, then, its index is +1. Therefore, in the full (4 × 4) game, in turn by the index

theorem, the only other component P1 must have index 0.

• At p = 1
2 , there are still two components, E1’-P2 and P1-E2’-P3. By the robustness property

of the index, E1’-P2 has index +1: in any perturbed game that comes to lie in the case

p < 1/2, E1 corresponds to the component E1’-P2, which implies that the two have the

same index. By the index theorem, the component P1-E2’-P3 then has index 0. (Note also

that by robustness, P1-E2’-P3 has index 0: in any perturbed game that comes to lie in the

case p < 1/2, P1 corresponds to the component P1-E2’-P3 and they therefore have to have

the same index.)

• When 1
2 < p < 1, there are three components: By robustness, P2 (which corresponds to the

component E1’-P2) has index +1. The partially revealing equilibrium E2 is again isolated

and quasistrict, hence regular, and both players mix between two strategies. However, if we

discard the unused strategies, the 2 × 2 restricted game is now a coordination game, with

two strict equilibria, and E2. Since strict equilibria have index +1, E2 has index −1. Hence

in the full game, by the index theorem, the third component, P3, has index +1.

In other words, as p increases through the critical value 1
2 , the equilibrium component P1 splits

into the two components E2 and P3. (Note that, as required by the robustness property of the

index, the index of the component P1-E2’-P3 (0) is the same as that of P1, on the one hand,

and as the sum of the indices of E2 and P3, on the other hand.) Note also that at p = 1
2 , the

component P1-E2’-P3 is substantially bigger than the limit of the three, but still disjoint from

the E1’-P2 component. This should just remind us of the fact that the set of Nash equilibria is

upper semicontinuous against payoff perturbations, but in general not continuous. These results

are indicated also in Table 1.
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p = 0 p = 1/2 p = 1

P1 (0)

E1 (+1)

E1-P2 (+1)

P3 (+1)

E2 (-1)

P2 (+1)

Figure 6: The index of equilibria: class I, case 1: 0 ≤ c1 < c2 < 1 for 0 ≤ p ≤ 1. For p = 0 there is

a unique component E1-P1. For p = 1 there are two components: P3 (with index +1 and E2-P2

(with index 0).

Table 1. Equilibrium structure, class I, case 1: 0 ≤ c1 < c2 < 1

Prior Equilibrium component Strategies Payoffs

p < 1
2

(E1) : partially revealing h −→ s s −→ a with c2 h: c2 − c1 2: 1− p

Index: +1, forward induction ` −→ s with p
1−p

s̄ −→ ā `: 0

(P1): both use s̄ h −→ s̄ s −→ a with y ≤ c1 h: 0 2: 1− p

Index: 0, not fwd. induction ` −→ s̄ s̄ −→ ā `: 0

p > 1
2

(E2) : partially revealing h −→ s̄ with 1−p
p

s −→ a h: 1− c1 2: p

Index: −1, forward induction ` −→ s̄ s̄ −→ a with 1− c1 `: 1− c1

(P2): both use s h −→ s s −→ a h: 1− c1 2: p

Index: +1, forward induction ` −→ s s̄ −→ a with y′ ≤ 1− c2 `: 1− c2

(P3): both use s̄ h −→ s̄ s −→ a with any y h: 1 2: p

Index: +1, forward induction ` −→ s̄ s̄ −→ a `: 1

p = 1
2

(E1’-P2): both use s h −→ s s −→ a with y ∈ [c2, 1] h: [c2−c1, 1−c1] 2: 1
2

Index: +1, all forward induction ` −→ s s̄ −→ a with y′ ∈ [0, y − c2] `: [0, 1− c2]

(P1-E2’-P3): both use s̄ h −→ s̄ s −→ a with y ∈ [0,min {y′+c1, 1}] h: [0, 1] 2: 1
2

Index: 0, not all fwd. induction l −→ s̄ s̄ −→ a with y′ ∈ [0, 1] `: [0, 1]

This implies: P1 and E2 cannot be asymptotically stable for any reasonable dynamics, while

E1, P2, and P3 are candidates for asymptotic stability, at least for some reasonable dynamics

(but certainly not for all dynamics). For example, for the replicator dynamics, as we will see

in the following section, E1 is not asymptotically stable, only stable (since in the supporting 2-

dimensional face it is surrounded by periodic solutions). However, for the best response dynamics,

E1 is indeed asymptotically stable.
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These results extend to the two other cases (c2 = 1 and c2 > 1), due to the robustness property

of the index. Table 2 and Table 3 indicate these results. Note in particular that the fully revealing

equilibrium E* always sits in a component with index +1.

Table 2. Equilibrium structure, class I, case 2: 0 ≤ c1 < c2 = 1

Prior Equilibrium component Strategies Payoffs

p < 1
2

(E*-E1): h −→ s s −→ a h: 1− c1 2: [1-p,1]

Index: +1, forward induction ` −→ s with ≤ p
1−p

s̄ −→ ā `: 0

(P1): h −→ s̄ s −→ a with y ≤ c1 h: 0 2: 1− p

Index: 0, not fwd. induction ` −→ s̄ s̄ −→ ā `: 0

p > 1
2

(E2): h −→ s̄ with 1−p
p

s −→ a h: 1− c1 2: p

Index: −1, forward induction ` −→ s̄ s̄ −→ a with 1− c1 `: 1− c1

(E*-E1’-P2): h −→ s s −→ a h: 1− c1 2: [p, 1]

Index: +1, forward induction ` −→ s with any x` s̄ −→ ā `: 0

(P3): both use s̄ h −→ s̄ s −→ a with any prob h: 1 2: p

Index: +1, forward induction ` −→ s̄ s̄ −→ a `: 1

p = 1
2

(E*-E1’-P2): h −→ s s −→ a h: 1− c1 2: [ 1
2
, 1]

Index: +1, all forward induction ` −→ s with any x` s̄ −→ ā `: 0

(P1-E2’-P3): both use s̄ h −→ s̄ s −→ a with y ∈ [0,min {y′+c1, 1}] h: [0, 1] 2: 1
2

Index: 0, not all fwd. induction ` −→ s̄ s̄ −→ a with y′ ∈ [0, 1] `: [0, 1]

Table 3. Equilibrium structure, class I, case 3: 0 ≤ c1 ≤ 1 < c2

Prior Equilibrium component Strategies Payoffs

p < 1
2

(E*): perfectly revealing h −→ s s −→ a h: 1− c1 2: 1

Index: +1, forward induction ` −→ s̄ s̄ −→ ā `: 0

(P1) : both use s̄ h −→ s̄ s −→ a with y ≤ c1 h: 0 2: 1− p

Index: 0, not fwd. induction ` −→ s̄ s̄ −→ ā `: 0

p > 1
2

(E2): partially revealing h −→ s̄ with 1−p
p

s −→ a h: 1− c1 2: p

Index: −1, forward induction ` −→ s̄ s̄ −→ a with 1− c1 `: 1− c1

(E*) : perfectly revealing h −→ s s −→ a h: 1− c1 2: 1

Index: +1, forward induction ` −→ s̄ s̄ −→ ā `: 0

(P3) : both use s̄ h −→ s̄ s −→ a with any y h: 1 2: p

Index: +1, forward induction ` −→ s̄ s̄ −→ a `: 1

p = 1
2

(E*) : perfectly revealing h −→ s s −→ a h: 1− c1 2: 1

Index: +1, all forward induction ` −→ s̄ s̄ −→ ā `: 0

(P1-E2’-P3): both use s̄ h −→ s̄ s −→ a with y ∈ [0,min {y′+c1, 1}] h: [0, 1] 2: 1
2

Index: 0, not all fwd. induction ` −→ s̄ s̄ −→ a with y′ ∈ [0, 1] `: [0, 1]
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3.2 Replicator dynamics and best-response dynamics

Replicator dynamics for the normal form

The replicator dynamics for a two-population game is given by:

ẋi = xi(u
1
i − ū1), i = 1, . . . n1

ẏj = yj(u
2
j − ū2), j = 1, . . . n2,

(1)

where uki is the payoff of player k playing strategy i, and ūk is the average payoff of player k.

For our game, with the notation y = (y(aa), y(aā), y(āa), y(āā)), y = y(aa) + y(aā), y′ =

y(aa) + y(āa), we can simplify the payoffs for player 1 against a mixed strategy y of player 2:

u1
1 = u1(ss,y) = y − pc1 − (1− p)c2

u1
2 = u1(ss̄,y) = p(y − c1) + (1− p)y′

u1
3 = u1(s̄s,y) = (1− p)(y − c2) + py′

u1
4 = u1(s̄s̄,y) = y′

(2)

Note that

u1(ss) + u1(s̄s̄) = u1(ss̄) + u1(s̄s) (3)

Similarly, with x = (x(ss), x(ss̄), x(s̄s), x(s̄s̄)), xh = x(ss) + x(ss̄) and x` = x(ss) + x(s̄s), we can

express the payoffs for player 2 against a mixed strategy x of player 1 as

u2
1 = u2(aa,x) = p

u2
2 = u2(aā,x) = pxh + (1− p)(1− x`)

u2
3 = u2(āa,x) = p(1− xh) + (1− p)x`

u2
4 = u2(āā,x) = 1− p

(4)

Note again that

u2(aa) + u2(āā) = u2(aā) + u2(āa) (5)

We point out that (3) and (5) hold for any normal-form game derived from a game tree as given in

Figure 3 (for any specification of payoffs at the end nodes of the tree). These special features allow

us to reduce the replicator dynamics to smaller dimension: As shown in the Proposition, equations

(3) and (5) imply that x(ss)x(s̄s̄)
x(ss̄)x(s̄s) and y(aa)y(āā)

y(aā)y(āa) are constants of motion for the replicator dynamics

of the normal form games, see Gaunersdorfer, Hofbauer, and Sigmund (1991), Cressman (2003).

So the 6-dimensional state space ∆4×∆4 is foliated into a two parameter family of 4-dimensional

invariant manifolds. On the “central” invariant manifold given by

x(ss)x(s̄s̄) = x(ss̄)x(s̄s), y(aa)y(āā) = y(aā)y(āa) (6)
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which is sometimes called the Wright manifold (see, for example, Cressman, 2003), the replicator

dynamics simplifies to (10) below, as we will show now.

Proposition. Let

ẋi = xi(ui − ū), i = 1, . . . 4 (7)

be the replicator equations for one population whose payoff function u : ∆4 → R4 satisfies u1+u4 =

u2 + u3. Then x1x4

x2x3
is a constant of motion for (7). The invariant manifold x1x4 = x2x3 can be

parameterized by x1 = xx′, x2 = x(1−x′), x3 = (1−x)x′, x4 = (1−x)(1−x′) with (x, x′) ∈ [0, 1]2

where conversely, x = x1 + x2, x
′ = x1 + x3. On this invariant manifold, (7) can be written as

ẋ = x(1− x)(u1 − u3)

ẋ′ = x′(1− x′)(u1 − u2)
(8)

Proof. Applying the quotient rule to (7) yields:(
x1x4

x2x3

)·

=

(
x1x4

x2x3

)
(u1 + u4 − u2 − u3) = 0. (9)

By x1x4 = x2x3 one obtains (8). �

Applying (8) to (2) and (4) yields the replicator dynamics on the Wright manifold:

ẋh = xh(1− xh)(y − c1 − y′)p

ẋ` = x`(1− x`)[y − c2 − y′](1− p)

ẏ = y(1− y)[pxh − (1− p)x`]

ẏ′ = y′(1− y′)[p(1− xh)− (1− p)(1− x`)]

(10)

Replicator dynamics for behavior strategies

The above system of differential equations on the hypercube [0, 1]4 can be derived directly from the

extensive form, as the replicator dynamics for behavior strategies. For this purpose we interpret

xh = Prob(s|high), xl = Prob(s|low), y = Prob(a|s), and y′ = Prob(a|s̄). Recall that in a binary

choice game, with alternatives A and B, and frequencies x and 1 − x, the replicator dynamics

reads ẋ = x(1− x)[u(A)− u(B)].

For the costly-signaling game in Figure 3 (Class I) this leads exactly to (10). The factors p and

1 − p in the first two equations come from the probabilities of Nature’s draw. Equation (10) is

like the replicator equation for a binary 4-person game with linear incentives, with the hypercube

[0, 1]4 as state space.

We now analyze the dynamics (10) for class I, for each of the three relevant cases concerning

the cost parameters and, within each of these, the three relevant cases regarding p.
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Class I, case 1, 0 < c1 < c2 < 1:

p < 1
2 : All 24 corners of the hypercube are rest points of (10), and additionally also the Nash

equilibrium E1 = (1, p
1−p , c2, 0), and the edges (0, 0, ∗, 0), (0, 0, ∗, 1), (1, 1, 0, ∗), (1, 1, 1, ∗).

Dynamics near E1:

E1 is a quasistrict Nash equilibrium, since the external eigenvalues are (1−xh)·

1−xh
= (c2 − c1)p < 0

and ẏ′

y′ = 2p − 1 < 0. In the supporting boundary face (1, ∗, ∗, 0), which in Figure 7 corresponds

to the lower front square, we have

ẋ` = x`(1− x`)[y − c2](1− p)

ẏ = y(1− y)[p− (1− p)x`]
(11)

which is the replicator dynamics for a cyclic 2×2 game, with closed orbits around the equilibrium

E1. Since for each of these periodic solutions, the two external eigenvalues (Floquet exponents)

equal the above two external eigenvalues at the equilibrium E1 (by the averaging property of

replicator dynamics), these attract each a three-dimensional manifold of solutions. Altogether the

boundary face (1, ∗, ∗, 0) attracts an open set of initial conditions from [0, 1]4.

Dynamics near the edge containing P1, (0, 0, ∗, 0):

Near the rest points (0, 0, y, 0), for the transversal directions, we have the linearized dynamics

ẋh/xh = (y − c1)p

ẋ`/x` = (y − c2)(1− p)

ẏ′/y′ = p− (1− p) < 0

(12)

so these are Nash equilibria for 0 ≤ y ≤ c1 < c2. For 0 ≤ y < c1, all three external eigenvalues are

negative, hence this is a quasistrict Nash equilibrium and attracts a 3-dimensional stable manifold.

The basin of attraction of the whole component P1 contains an open set from the hypercube. Now

we study the behavior near the end point of P1, -P1= (0, 0, c1, 0). This point has a 2-dimensional

stable manifold and a 2-dimensional center manifold, the latter contained in the 2-dimensional

face (∗, 0∗, 0) with dynamics

ẋh = xh(1− xh)[y − c1]p

ẏ = y(1− y)pxh

(13)

This is the replicator dynamics of a degenerate/nongeneric 2× 2 game shown in the left panel of

Figure 10. There is one orbit converging to the endpoint -P1, and one orbit with -P1 as α–limit

which converges to the corner (1, 0, 1, 0) (this corner is unstable in the x` direction and hence is

not a Nash equilibrium). This shows that the endpoint -P1 is unstable (in contrast to all other
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Nash equilibria in the component P1) and hence the component P1 itself is unstable: There is an

orbit connecting to the corner (1, 0, 1, 0), sitting on the face of E1.

Convergence

We show that all orbits in the interior of the hypercube converge to either the supporting face of

E1 or to the component P1. On the boundary, orbits may also converge to one of the corners:

From the first two equations of (10) we see that

ẋh
pxh(1− xh)

− ẋ`
(1− p)x`(1− x`)

= c2 − c1 > 0 (14)

and hence
1

p
[log xh − log(1− xh)]· − 1

1− p [log x` − log(1− x`)]· = c2 − c1 > 0

and [
xh

1− xh

]1−p [
1− x`
x`

]p
↑ ∞

Since the numerators are bounded, we infer

(1− xh)x` → 0 (15)

so that all interior orbits converge to the union of the two facets xh = 1 (in Figure 7, the bottom

cube) and x` = 0 (the inner cube).

Similarly, we obtain from the last two equations of (10)

[log y − log(1− y) + log y′ − log(1− y′)]· =
ẏ

y(1− y)
+

ẏ′

y′(1− y′) = 2p− 1 < 0 (16)

and, since p < 1
2 ,

yy′ → 0

so that all interior orbits converge to the union of the two facets y = 0 and y′ = 0. All in all, the

ω–limit sets must be contained in the union of four 2-dimensional faces:

(1, ∗, 0, ∗) — there, all orbits converge to (1, 0, 0, 0),

(1, ∗, ∗, 0) — this is the face containing E1 and the periodic solutions (Figure 10, top left panel),

(∗, 0, 0, ∗) — there, all orbits converge to (0, 0, 0, 0), and

(∗, 0, ∗, 0) — the dynamics on this face, the inner front square in Figure 7, which contains the

equilibrium component P1 in an edge, was described above (Figure 10, top right panel).

Best-reponse dynamics

The best-reponse dynamics for a two-population game is given by:

ẋ = BR1(y)− x

ẏ = BR2(x)− y
(17)
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Figure 7: The hypercube: Nash equilibria for class I, case 1 (0 < c1 < c2 < 1), p < 1/2. Arrows

on the edges show the direction of the flow of the replicator dynamics (10). Edges without arrows

consist of rest points. Nash equilibria are coloured red. Also shown: the connecting orbit from

-P1 to 1010.

All orbits converge to one of the Nash equilibria: either to E1, or to P1. This follows, for

instance, from Berger (2005), since we can reduce the 4× 4 game to a 3× 2 game (for p < 1
2 ) in

the following way: For all p ∈ (0, 1), the counter intuitive strategy of player 1 s̄s (don’t use the

costly signal if high, use it if low) is strictly dominated:

u1(s̄s) < (1− p)u1(ss) + pu1(s̄s̄).

If p < 1
2 , then for player 2, aa is strictly dominated by āā, and (after s̄s is eliminated) also āa is

dominated by āā (except at ss, that is, xh = x` = 1). Therefore, the game is reduced to the 3× 2

game, or where xh ≥ x` and y′ = 0. (This would also give an alternative proof for the replicator

dynamics that y′ → 0.)

E1 is asymptotically stable, the component P1 is not. Still and all, both components attract

big open sets. Most orbits converging to P1 converge to the corner (0, 0, 0, 0).

p > 1
2 : Here (10) has the following rest points: all 24 corners of the hypercube (Figure 8), the

edges (1, 1, 0, ∗) and (1, 1, 1, ∗) where player 1 uses the costly signal in both of his types (the latter

containing the Nash-equilibrium component P2), the edges (0, 0, ∗, 0) and (0, 0, ∗, 1) where player

1 never uses the costly signal, in none of his types (which is the Nash-equilibrium component P3),
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Figure 8: The hypercube: Nash equilibria for class I, case 1, p > 1/2.
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Figure 9: The hypercube: Nash equilibria for class I, case 1, p = 1/2. Also shown: two orbits

leading from the component P1-E2’-P3 to 1010.
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Figure 10: Phase portraits of the replicator dynamics. At the top for the case p < 1/2: left, on

the face (1, ∗, ∗, 0) containing E1; right, on the face (∗, 0, ∗, 0) containing P1. At the bottom for

the case p > 1/2: left, on the face (∗, 0, 1, ∗) containing E2; right, on the face (1, ∗, 1, ∗) containing

P2.
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and the Nash equilibrium at E2 = (1− 1−p
p , 0, 1, 1− c1).

The expression in (16) is now positive, because p > 1
2 , and hence

(1− y)(1− y′)→ 0.

This means that all orbits converge to the union of the two facets y = 1 (the cube at the right)

and y′ = 1 (the cube in the back). Together with (15), which holds for all p ∈ (0, 1) and shows

convergence to the union of xh = 1 (the bottom cube) and x` = 0 (the inner cube), the ω–limit

sets must be contained in the union of the following four 2-dimensional faces:

(1, ∗, 1, ∗) — this face (the lower right square) contains the edge of rest points (1, 1, 1, ∗); interior

orbits in this face converge to one of the Nash equilibria (1, 1, 1, y′) in P2 (with 0 < y′ < 1− c2);

see Figure 8 and lower right panel in Figure 10.

(1, ∗, ∗, 1) — interior orbits in this face (the lower back square) converge to the corner (1,0,1,1),

see Figure 8.

(∗, 0, 1, ∗) — this face (the inner right square) contains the isolated equilibrium E2. Most orbits

in this face converge to (0, 0, 1, 1) ∈ P3 or to (1, 0, 1, 0). The face itself is unstable along the edge

(1, ∗, 1, 0) along which there is a connection to (1, 1, 1, 0) ∈ P2. The saddle point E2 lies on the

separatrix, i.e., the manifold separating the two basins of attraction; see Figure 8 and lower left

panel in Figure 10.

(∗, 0, ∗, 1) — this face (the inner back square) contains the edge of rest points (0, 0, ∗, 1) which is

exactly the equilibrium component P3. Interior orbits in this face converge to one of the Nash

equilibria in P3.

Behavior near P3. In an analogous way to (12), one can show that each equilibrium in P3 is

quasistrict. Therefore, P3 is asymptotically stable.

Behavior near P2. P2 is stable and interior attracting (Cressman 2003), but not asymptotically

stable, since the whole edge spanned by P2 consists of rest points.

Best-response dynamics

The region {(xh, x`, y, y′) ∈ [0, 1]4 : p(1 − xh) − (1 − p)(1 − x`) < 0, y − c2 − y′ > 0} is forward

invariant under the best-response dynamics, and orbits move straight towards the Nash equilibrium

(1, 1, 1, 0) in P2. In the forward invariant region {(xh, x`, y, y′) ∈ [0, 1]4 : 0 < pxh − (1 − p)x` <
2p− 1, y − c1 − y′ < 0} orbits move straight towards the Nash equilibrium (0, 0, 1, 1) in P3. And

in the forward invariant region {(xh, x`, y, y′) ∈ [0, 1]4 : 0 > pxh− (1− p)x`, y− c1− y′ < 0} orbits

move straight towards the Nash equilibrium (0, 0, 0, 1) in P3. Furthermore, it is easy to check that

both P2 and P3 are asymptotically stable, every best-response path converges to the set of Nash

equilibria, and that every Nash equilibrium is the limit of some orbit from the interior.
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p = 1
2 : The replicator dynamics for behavior strategies (10) is now (after omitting the common

factor 1
2 ) given by

ẋh = xh(1− xh)(y − y′ − c1)

ẋ` = x`(1− x`)(y − y′ − c2)

ẏ = y(1− y)[xh − x`]

ẏ′ = y′(1− y′)[−xh + x`]

(18)

From the last two equations we get a constant of motion:

[log y − log(1− y) + log y′ − log(1− y′)]· =
ẏ

y(1− y)
+

ẏ′

y′(1− y′) = 0 (19)

and hence, with C > 0 constant,

yy′ = C(1− y)(1− y′).

Recall that the argument leading from (14) to (15) is valid for all p ∈ (0, 1). Hence

(1− xh)x` → 0 (20)

so that all interior orbits converge to the union of the two facets xh = 1 (the bottom cube) and

x` = 0 (the inner cube).

The set of Nash equilibria splits into two connected components, each of them 2-dimensional:

xh = x` = 0, y′ ≥ y − c1

xh = x` = 1, y′ ≤ y − c2

The first is the component P1-E2’-P3 which is exactly the convex hull of P1, E2’ = (0, 0, 1, 1− c1)

and P3 (Figure 9). It is a pentagon with 3 right angles and a line of symmetry. All equilibria with

xh = x` = 0, y′ > y − c1 are quasistrict and attract a 2-dimensional stable manifold, together an

open set of orbits in [0, 1]4. However, this component P1-E2’-P3 is unstable, in agreement with its

index being 0. Indeed the vertex E2’ is unstable (as it is for p > 1
2 ): On (∗, 0, 1, ∗) (the inner right

square), there is an orbit from E2’ down to (1, 0, 1, 0) (see Figure 9) and from there to (1, 1, 1, 0) in

the component E1’-P2. Similarly, every point on the line segment (0, 0, y′+c1, y
′) : 0 ≤ y′ ≤ 1−c1

(the edge of the pentagon connecting E2’ with the endpoint -P1 of the component P1) is unstable.

From each of these points there is a connecting orbit to (1, 0, 1, 0).

The other component E1’-P2 is stable (but not asymptotically stable) under the replicator

dynamics. Since E1’ = (1, 1, c2, 0) and P2 is the line segment from (1, 1, 1, 1) to (1, 1, 1, 1 − c2),

the component E1’-P2 is the convex hull of E1 and P2, a triangle. All equilibria with xh = x` =
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1, y′ < y − c2 are quasistrict and attract a 2-dimensional stable manifold, together an open set of

orbits in [0, 1]4.

Best-response dynamics

The region {(xh, x`, y, y′) ∈ [0, 1]4 : xh < x`, y − c1 − y′ < 0} is forward invariant under the

best-response dynamics, and orbits move straight towards the Nash equilibrium (0, 0, 0, 1) in P3.

In the forward invariant region {(xh, x`, y, y′) ∈ [0, 1]4 : xh > x`} orbits move towards the Nash

equilibrium (1, 1, 1, 0) in E1’-P2. Furthermore, it is easy to check that every best-response path

converges to the set of Nash equilibria. If we start on the set xh = x` we can reach any Nash

equilibrium.

We remark that for p = 1
2 , both dynamics on the hypercube are symmetric w.r.t. (y, y′) 7→

(1− y′, 1− y).

To summarize, how does the flow on the hypercube change, as p goes through 1
2? The flow on

xh = x` = 0 (the upper inner square) switches in the y′ direction from ↓ to ↑, thus replacing the

attractor P1 with the attractor P3. The flow on xh = x` = 1 (the bottom outer square) switches

in the y direction from ← to →. All the other arrows on the one-dimensional skeleton of the

hypercube stay the same!

Class I, case 2: 0 < c1 < c2 = 1

From (10) we get ẋ` < 0 in (0, 1)4 and ẋ` = 0 if y = 1 and y′ = 0. Hence the ω–limit of every

interior orbit is contained in the union of (∗, ∗, 1, 0) (the front right square) and (∗, 0, ∗, ∗) (the

inner cube). This is an example of a weakly dominated strategy that is not eliminated under the

replicator dynamics.

p < 1
2 : Here the equilibrium E1 moves from a 2-dimensional face onto an edge (the right lower

front edge connecting the outside to the inner cube): E1 = (1, p
1−p , 1, 0). Therefore, this whole

edge (1, ∗, 1, 0) consists of rest points of the replicator dynamics, and these are Nash equilibria if

and only if x` ≤ p
1−p . So E1 is now the end point of a one-dimensional component of Nash equi-

libria, bounded by E1 and E* = (1, 0, 1, 0), the perfectly revealing equilibrium. This equilibrium

component E*-E1 (and every single equilibrium in it) is stable under the replicator dynamics. The

component is even asymptotically stable under the best-response dynamics. But E* is the only

point in this component which is stable under the best-response dynamics.

The other component P1 is again unstable: there is an orbit in (∗, 0, ∗, 0) (the inner front square)

connecting the endpoint of P1 to E*.

p ≥ 1
2 : The components P2 and E1’-P2 shrink to the singleton (1, 1, 1, 0) as c2 ↑ 1. But for c2 = 1

the whole edge (1, ∗, 1, 0) connecting E* = (1, 0, 1, 0) with (1, 1, 1, 0) consists of Nash equilibria.

This component is again stable under the replicator dynamics and asymptotically stable under
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the best-response dynamics. The other components behave as in the case c2 < 1.

Class I, case 3, 0 < c1 < 1 < c2

From (10) we get ẋ`/x` < 0 in [0, 1]4 and hence ẋ` ↓ 0 whenever x` < 1. Now the perfectly

revealing equilibrium E* = (1,0,1,0) is a strict Nash equilibrium, and therefore asymptotically

stable for the replicator and the best-response dynamics. As c2 increases from the value 1 to

values larger than 1, the one-dimensional component on the edge from E* to (1, 1, 1, 0) shrinks

suddenly to the strict equilibrium E*. The other components behave as in the case c2 < 1.

Summary:

In Class I, the components with index +1, that is, E1, E*-E1, E*, P2, E*-E1’-P2, and P3,

whenever they exist, are stable under the replicator dynamics and asymptotically stable under the

best-response dynamics. All other components are unstable.

3.3 Applications

The typical application of class I are educational credentials as a signal for performance or pro-

ductivity as Spence (1973) has suggested it—the underlying hypothesis being that obtaining a

certain degree is less costly in terms of effort and time for the more productive type.

The education-as-a-costly-signaling hypothesis has a corollary for phenomena related to lan-

guage, for language competences (in one’s own or a foreign language) often seem to function as

the carriers of such educational signals. To speak with a certain twist of tongue, to express oneself

elaborately or in a certain tone is often taken as correlating with a certain level of education, up

to standing for a certain school or type of school. Bourdieu (1982, 1991) prominently describes

such phenomena. Similarly as what concerns foreign language competences: having more foreign

languages on one’s CV usually is considered to give one an edge in the job market. This hypothesis

might provide insight into the economics of languages. It might explain, for example, why workers

who have competences in foreign languages that are not used in a given work environment still

have a higher wage (a phenomenon reported, for instance, by Ginsburgh and Pietro-Rodriguez

2011). More generally, the bare ability to speak and write grammatically correct might function as

a signal of certain social abilities, such as the ability to abide to certain rules, to understand and

adapt to different social environments, which are not only valuable qualities in the work place, but

which more broadly testify of our being reliable and predictable members of society. Language

competences are an ideal carrier of such qualities because they are permanently put on display. In

that perspective, Class I might be a good model for phenomena studied in sociolinguistics, such

as the social meaning of certain accents or dialects, but also the bare ability to switch between

different such styles (see, for example, Eckert and Rickford 2001).
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Costly-signaling arguments that anthropologists have advanced to explain certain seemingly

wasteful foraging strategies also seem to fall into the pattern captured by class I—differential costs

in producing the signal. Bliege Bird and co-authors (Bliege Bird et al. 2001, Bliege Bird and Smith

2005), for example, have found that the Meriam, a Melanesian people, engage in certain forms

of hunting, namely, spearfishing and collaborative turtle hunting, that are inefficient in terms of

calories and macronutrients with respect to other viable foraging strategies, most importantly the

collecting of shellfish. Bliege Bird et al. notably argue that spearfishing, which is practiced mostly

by young men, comes to function as a signal precisely because its rate of success is a function

of the individual performing it, while the collecting of shellfish, in which everybody participates,

has constant outcomes over individuals. What’s signaled by such inefficient foraging strategies, so

Bliege Bird at al., are unobservable physical qualities and cognitive skills, such as strength, agility,

precision, and risk-taking, and, in the case of turtle hunting, also leadership skills and generosity

(the hunt is organized in groups under a hunt leader and proceeds of the hunt are provided for

public feasts), which increase social status and give advantages in mate choice.

On the other hand, the assumption of Class I that the two types face different costs in producing

the signal might be hard to justify in some applications. This comes out most clearly when the

cost of the signal is some fixed monetary value. For example: placing an add in a newspaper has

a price, but that price usually is a fixed rate and not a function of the quality of the company

or institution who buys the ad. And quite similarly for advertising in the animal world by the

display of a handicap: while having a colorful coat plausibly can be considered a cost in terms

of the chances of survival, because an individual who carries it will be spotted earlier or more

likely by a predator, it is less clear that that cost should be different for different types. After

all, the augmented probability to be seen is a function of the observable trait and not necessarily

a function of the unobservable trait. And, indeed, formal models of advertising or respectively

the handicap principle do not turn on the assumption of different costs in producing the signal,

but are grounded in the idea that different types have a different background payoff, or fitness,

from which the cost of the signal, possibly uniform across types, is deducted. Class II (section 5)

captures this mechanism.

4 Belief-based refinements of sequential Bayesian Nash equi-

librium

Sequential Bayesian Nash equilibrium (Kreps and Wilson 1982) requires that players update their

beliefs over the possible states of nature (here player 1’s types) according to Bayes’ rule along

the equilibrium path, that is, the path through the game actually taken in the equilibrium under
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study as determined by the players’ equilibrium strategies. However, it does not—at least not for

the class of games to which belong signaling games—impose any restrictions on beliefs “off the

equilibrium path,” that is, a situation that could in principle happen, but that does not happen in

the equilibrium under study—a counterfactual situation, one could say. This is important because

what can be an equilibrium outcome depends on what players would do “off the equilibrium path.”

In signaling games, a situation off the equilibrium path is one after a signal that is in principle

part of the game but that is not used in the equilibrium under study. In the games studied here,

this concerns equilibrium outcomes in which both types use the same signal, such as P1, P2, and

P3. Take, for instance the equilibrium outcome P1 (which exists for p < 1/2), in which both types

of player 1 use s̄, and player 2 in response to s̄ takes ā. Relative to this equilibrium outcome, the

situation that the costly signal s is observed is “off the equilibrium path.” Certainly, for any of

player 1’s types, whether s or s̄ is a best response to player 2’s strategy depends not only on what

player 2 does in the absence of the signal (on the equilibrium path), but also on what player 2

were to do off the equilibrium path, in the event that the costly signal s were observed. In any

equilibrium that belongs to the component P1, player 2 in response to s takes a with a probability

in [0, c1], that is, in no case higher than c1, which by assumption is strictly below 1. Imagine that

contrary to that player 2 in response to s were to take a for sure, that is, with a probability of 1.

Then, for player 1, no matter if he is of the high or low type, using s̄ would no longer be a best

response. He should use s instead. The equilibrium would break down.

In a rationality-oriented game-theoretic perspective, players’ equilibrium strategies have to be

supported by their beliefs. Let us look at P1 again: player 2’s equilibrium strategy which in

response to the off-the-equilibrium-path signal s has her take a with a probability of c1 at most

implies that after s player 2 attributes to the high type a probability of 1/2 at most (for if she

were to attribute to the high type a probability of more than 1/2, she would have to take a for

sure). One could wonder whether that is plausible, because s is less expensive for the high type.

In the extreme case that c1 = 0 this appears particularly implausible: the high type pays nothing

for the signal, but when the signal is expressed, one should think that it came from the low type?

Bayes’ law, we should be reminded, does not help us here, because it is not defined (see Figure 5).

Classical refinements of sequential Bayesian Nash equilibrium take such considerations as a

starting point: they operate on the principle of imposing restrictions on players’ beliefs “off the

equilibrium path.” Such restrictions, so to say, come to complement Bayes’ rule where it is

not defined, and thereby refine the Bayesian Nash equilibrium notion. Depending on what is

considered a plausible restriction on beliefs off the equilibrium path (how one thinks that Bayesian

rational players should think when Bayes’ rule does not apply), there is an entire family of such

refinement concepts. Some of those concepts, for instance, the never-a-weak-best-response criterion

(Kohlberg and Mertens 1986), a criterion called divinity (Banks and Sobel 1987), and forward
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induction as defined by Govindan and Wilson (2009) indeed discard the no-signaling equilibrium

outcome P1. We give below the argument for Govindan and Wilson’s forward-induction criterion,

which, to our mind, is the most fundamental of the three, because it is defined for any game in

extensive form and has a foundation in certain decision-theoretic requirements, and for the class

of games that we study, conveniently, coincides with the fairly simple to check never-a-weak-best-

response criterion.

Forward induction after Govindan and Wilson (2009) (the never-a-weak-best-response crite-

rion) requires that after a signal off the equilibrium path the support of the belief should not

contain types for whom that off-the-equilibrium-path signal is never (that is, for no reaction of

player 2 to the off-the-equilibrium-path signal that supports the equilibrium outcome under study)

an alternative best response relative to the signal used in the equilibrium under consideration. By

this rule, the equilibrium outcome P1 is indeed ruled out: Within P1 there is one equilibrium

point, namely the one where player 2 in response to s were to take a with a probability of exactly

c1 (the endpoint of that component), in which for the high type taking s is indeed an alternative

best response relative to taking s̄. For the low type there is no such point. Hence, after s, the low

type has to be discarded from the support of the belief, and therefore full belief (a probability of

1) has to be put on the high type. But then, as we saw above, after s, player 2 should take a for

sure (and not with a probability of c1 at most), and this will upset the equilibrium outcome under

study: P1 is not robust under forward induction (the never-a-weak-best-response criterion).

For class I, when c2 < 1 (case 1), for p 6= 1/2, the no-signaling equilibrium outcome P1 is in fact

the only equilibrium outcome that can be discarded by Govindan and Wilson’s notion of forward

induction (the never-a-weak-best-response criterion). All other equilibrium outcomes satisfy it.

Notice that equilibrium outcomes in which every signal is used with at least some probability by

some type, such as E1, E2 and E*, are trivially robust under any belief-based refinement (because

there is no signal off the equilibrium path). In the knife-edge case p = 1/2, in the component

E1’-P2, all outcomes are stable under the never-a-weak-best-response criterion; in the component

P1-E2’-P3, some outcomes (namely those that lie between P1 and E2’, including P1) are discarded

by the never-a-weak-best-response criterion.

Banks and Sobel’s divinity criterion gives the same results. Another prominent refinement of

sequential Bayesian-Nash equilibrium for signaling games is the intuitive criterion (Cho and Kreps

1987). The intuitive criterion is less restrictive than the never-a-weak-best-response criterion: it

discards a type from the support of the belief after an off-the-equilibrium path signal only if for

every possible reaction of player 2 to the off-the-equilibrium path signal that type is strictly worse

off than in the equilibrium outcome under study. Under this criterion, in P1, none of the types is

discarded after s, and hence P1 survives.

Comparing equilibrium-refinement results based on forward induction with those based on the
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index, one gets a fairly close overlap. In the games studied, whenever an equilibrium outcome

is discarded by forward induction in the sense of Govindan and Wilson (the never-a-weak-best-

response criterion), then the equilibrium component in which it sits has an index of 0, and hence

cannot be asymptotically stable under any standard evolutionary dynamics. Table 1 provides an

overview of the equilibrium structure of class I for the case c2 < 1, indicating for each equilibrium

component its index as well as whether the outcomes that belong to it satisfy forward induction

in the sense of Govindan and Wilson or not. The results extend to the two other cases regarding

c2, c2 = 1 and c2 > 1 (Tables 2 and 3).

Refinements of sequential Bayesian Nash equilibrium that rely on imposing restrictions on

beliefs off the equilibrium path can be seen as a form of strategic stability or robustness test,

because the equilibrium outcome under study is tested in light of what a rationally reasoning

player ought to believe in case that they observe a deviation from the equilibrium outcome under

study, and such a deviation can be seen as another player’s deliberate deviation from the strategy

that they are supposed to use in the equilibrium outcome under study. (Hence also the term

forward induction: it is as if the deviating player were counting on another player who moves

further down the tree to draw a certain inference from that deviation.) Important to note is that

these criteria do not require that in order to destabilize the equilibrium outcome under study, the

strategy profile resulting from these deviations would itself constitute an equilibrium outcome.

They truly are robustness criteria only. The deviations involved should not be thought of as being

acted out, rather they should be thought of as a thought experiment that takes place in the minds

of the players in the game, and a strategically stable equilibrium outcome, so the underlying idea,

should be robust under this kind of thought experiment. Certainly, such criteria are relevant in

applications where it is about human interaction, where the players in the game are reason-inspired

social individuals. It is good to know that an equilibrium outcome that can be discarded on such

rational, plausibility-of-beliefs grounds, will also be one that can be discarded on evolutionary

grounds.

5 Variants of the model

5.1 Class II: same costs, different benefits in case of success: the Hand-

icap Principle

In class II, the production of the signal is of the same cost c > 0 for the two types, but the high type

gets an extra payoff of d > 0 if the second player takes action a. The game is shown in Figure 9.

This model can be seen as a discrete variant of Milgrom and Roberts’s (1986) model of advertising

as a signal for product quality and Grafen’s (1990) formalization of Zahavi’s (1975) handicap
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principle. In Milgrom and Roberts’s model (1986), the idea is that a high quality product, if

consumed once, will attract more consumption in the future, and therefore the firm providing

it will profit more from a first sale than a firm with a lower quality product. The argument

seems to us particularly well fitted for scenarios where the function of advertising is not so much

in generating a decision to buy but a decision to inquire, in the process of which the firm or

individual with the high quality product or desired trait can provide more verifiable information,

which finally will bring about the decision to buy or accept (we think, for instance, of long-term

consumer goods, luxury goods, art). In Grafen’s model, the argument appears implicitly in the

form of assumptions on the derivatives of the fitness function.

In Zahavi’s (1975) original exposition of the handicap principle, which is purely verbal, it is not

clear if the argument is to be understood in the sense of class I or class II. We would argue that

it has to be understood in the sense of class II: payoffs are in terms of reproductive fitness, which

over the lifetime of an individual has to be understood as composed of several variables, notably

the success with which an individual gets mates and the chances of survival. A certain trait, like

prominent plumage, that represents an effective deduction from the fitness of the individual who

carries it (because it will be more visible, less fast, etc.) comes to function as a signal between

potential mates if the background fitness from which the cost of this signal is deducted differs

for different types. The particular payoff structure of class II (uniform costs of producing the

handicap but differential payoffs if the female accepts) arises then from an implicitly dynamic

argument (similar to Milgrom and Robert’s repeat sales): because payoffs are in terms of fitness,

an individual with higher background fitness profits more from an act of reproduction than an

individual with lower background fitness—because his offspring too will have a higher background

fitness and therefore a higher chance to reach himself reproduction age.

5.2 Class I and II are structurally equivalent

A convenient circumstance links class II to class I: Provided that c and d are positive (which we

assume), the games in class II have the same equilibrium structure as those in class I :

• If 0 < c < 1, the equilibrium structure will be as that in class I when c2 < 1;

• if c = 1, as that in class I when c2 = 1; and

• if 1 < c ≤ 1 + d, as that in class I when 0 ≤ c1 ≤ 1 < c2.

The numerical values defining the equilibria of class II can be obtained by those of class I by

substituting c1 by c/(1+d) and c2 by c. These values can be interpreted in a meaningful way: they

represent the net cost of the signal—the cost benefit-ratio of using the signal—for the respective

type (Table 4). Both class I and II are characterized by differential net costs of the signal s for
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Figure 11: Class I: in the top panel, the game in extensive form—the game given by a game tree;

in the bottom panel: the matrix game induced by that game in extensive form.

the two types. This property guarantees that the equilibria in these two classes will also have the

same robustness properties: as far as the index and the belief-based refinements discussed in the

previous section go, everything goes through exactly as for class I.

Table 4: The net cost of a signal

We call the net cost of a signal for type t the payoff of type t when he does not use the

costly signal and player 2 in the absence of the costly signal does not take the desired

action (πt(s̄, ā)) minus his payoff when he does use the costly signal and player 2 at

observing the costly signal does not take the desired action (πt(s, ā)) over the payoff

difference for this type when he uses the costly signal but player 2 does or does not take

the desired action (πt(s, a)− πt(s, ā)):

net cost of s for type t =
πt(s̄, ā)− πt(s, ā)

πt(s, a)− πt(s, ā)
.

Class I: net cost of s for the high type: c1; for the low type: c2.

Class II, the net cost of s for the high type: c/(1 + d); for the low type: c.
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5.3 The replicator dynamics

Here the payoffs for player 1 against mixed strategies of player 2 are given by

u1(ss,y) = (1 + pd)y − c

u1(ss̄,y) = −pc+ p(1 + d)y + (1− p)y′

u1(s̄s,y) = (1− p)(y − c) + p(1 + d)y′

u1(s̄s̄,y) = (1 + pd)y′

(21)

Again (3) holds. For player 2 the payoffs are the same as in (4). Thus the analog of (10), i.e., the

replicator dynamics for behavior strategies, is now given by

ẋh = xh(1− xh)[(1 + d)(y − y′)− c]p

ẋ` = x`(1− x`)[y − y′ − c](1− p)

ẏ = y(1− y)[pxh − (1− p)x`]

ẏ′ = y′(1− y′)[p(1− xh)− (1− p)(1− x`)]

(22)

This is essentially the same as Class I with c1 = c
1+d and c2 = c.

5.4 Some cost of the signal is needed

If in class II producing the signal were of no cost at all (c = 0), which we have excluded by

assumption, then the only equilibria that would exist are such that none of the signals pushes

player 2’s belief over the critical value 1/2 and, as a consequence, player 2 acts on her prior

belief, no matter which signal she has observed. That is to say: some positive cost of the signal

is necessary for the signal to be at least partially revealing or “informative,” and hence enable

cooperation (the desired exchange: hire, buy, mate) at least sometimes. To our mind, this is

the essence of the handicap principle (and not the claim that costly signaling is always perfectly

revealing).

5.5 Applications

As a general model of advertising, class II is extremely versatile. Not only firms and animals

advertise. Individuals participating in human society, as already Veblen (1899) has pointed it

out, advertise for themselves too. For example, by the houses we live in, the cars we drive,

and the dresses we wear, but also by the degrees we earn and the language we speak. Differential

background payoffs of different types can be considered to stand not only for differential pecuniary

rewards but also for differential levels of emotional involvement, attachment, desire, or esteem,

which further expands the range of possible applications in the social sciences, psychology, and
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linguistics. Class II seems to be the right model when investigating communal sharing, gift-giving,

and charity as costly signals for status or wealth.

When it comes to linguistic applications, class II is, we would argue, a good model for problems

in linguistic pragmatics where a certain speech act may well be of some cost, but where it might be

hard to argue why the production of that speech act should be of different costs for different types.

Politeness strategies (Brown and Levinson 1987) are a good example: using a more polite form

(expressing oneself more elaborately, writing a longer rather than a shorter letter, attenuating a

face threat by an indirect speech act, etc.) is costly, but it might be disputed that this cost should

differ for different types. “Please, could you pass me the salt” is certainly longer and hence more

costly than “Pass the salt!” But that is so no matter who pronounces the phrase, be it a speaker

who really means well with the addressee (a cooperative type) or not. It can however reasonably

be assumed that different speakers have different background payoffs if the addressee takes the

desired action, which can be understood, for example, as expressing different degrees by which the

speaker cares about the addressee.

5.6 Class I or II, or a combination?

In some phenomena, both the conditions of class I (differential cost in producing the signal) and

of class II (differential background payoffs in case that the second player takes the desired action)

might come in. Education is a case in point. If a certain educational credential is costly not only

in terms of effort but also in terms of money, it can also come to function as a signal in the sense

of class II. Having been to a certain school then becomes a signal of status or a signal for future

performance and commitment. It is as if the prospect employee were saying: “It pays off for me

to have invested into my degree, because once I get hired, I know that I will perform well and

therefore not lose my job quickly, and so the initial investment in my degree pays off for me.”

Another example are signals of dress: having a good suit or dress and shoes is expensive (a signal

in the sense of class II), but wearing them might, under certain circumstances, also be a physical

effort that different individuals might master in different degrees (a signal in the sense of class I).

The structural equivalence of class I and II is a powerful property. It tells us that when choosing

the model, we can focus on the mechanism that is the dominant one for the problem at hand; that

we do not need to disentangle the two effects, because they work “in the same direction,” because

the results do not change qualitatively if the other aspect comes in at the margin.

If, for a certain application, both aspects are relevant, and one is interested in a finer-grained

analysis, one can set up a combined model with differential costs of producing the costly signal s

and an extra payoff d for the high type if player 2 takes the desired action. In such a combined

model, the net cost of s for the high type will be c1/(1 + d), and for the low type c2, and the

equilibrium structure will be as in class I with c1 replaced by c1/(1 + d).
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6 Interpretation

6.1 Costly signaling is not necessarily a waste of social resources

A thought that runs through costly-signaling theory in economics is that signaling in markets

can lead to situations in which players “overinvest” in the economic variable that functions as

a signal, with the effect that the private returns to the economic variable that functions as a

signal exceed that variable’s marginal contribution to productivity (for reviews see, for example,

Kreps and Sobel 1994, Hörner 2006, Riley 2001, Spence 2002). Taking marginal productivity as

a reference point is to compare the equilibrium in the game (under asymmetric information) to

an equilibrium under perfectly competitive markets (under perfect information). From a game-

theoretic point of view, this is problematic because these are two different games, two different

worlds. What individuals do in a situation in which information is not complete—whether what

they do is efficient or not—has to be evaluated not with respect to what would be possible in

another (ideal) world without informational asymmetries, but with respect to what is possible

given these informational asymmetries. The welfare properties of an equilibrium outcome of that

game then should be compared to other equilibrium outcomes of that game. In order to do so,

one needs, of course, a fully-closed game-theoretic model.

For the games discussed here, it is possible to define in a meaningful way a “no-signaling

outcome” within the game, namely as an outcome in which both types do not use the costly

signal and player 2, in the absence of the costly signal, acts on her prior belief: when p < 1/2,

she will not accept, and when p > 1/2, she will accept.4 For any prior p, the thereby defined

no-signaling outcome, P1 respectively P3, constitutes an equilibrium outcome of the game. It is

therefore possible to compare the social welfare of equilibria in which the costly signal is used at

least sometimes by some type (partially revealing equilibria as E1 and E2, the perfectly revealing

equilibrium E*, or an equilibrium outcome in which everybody uses the costly signal) to the

respective no-signaling equilibrium outcome. Such a comparison (see the last column in Tables

1 – 3, which indicates the payoffs of the two types of player 1 and of player 2 for the respective

equilibrium component) shows that costly signaling, at least in the classes of games considered

here, is not necessarily wasteful on a social level. Instead, whether it is or not depends on the

prior probability of the types of player 1:

• When the prior probability on the good type is below the critical value, p < 1/2, no matter

whether the cost of the signal for the low type c2 (respectively c in class II) is below, equal

or larger than 1, the equilibrium component in which the costly signal is at least partially

informative (E1 respectively E*-E1 or E*) is better, in the sense of Pareto, than the co-

4There are games, for which this is not so obvious; for instance, the so-called “beer-quiche” game (Cho and

Kreps 1987), in which the two types of player 1 get differential positive payoffs from using the two different signals.
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existing equilibrium component P1, in which none of player 1’s types uses the costly signal

and player 2 does not take the desired action: in an equilibrium of the form E1 (respectively

E*), relative to P1, nobody is made worse off and at least someone, namely, the high type

of player 1, is made strictly better off (in an equilibrium in the component E*-E1 that is

different from E1 respectively in E*, player 2 is also made better off relative to P1). That

is: when p < 1/2, the use of a costly signal improves social well-being over a situation where

that signal is not used, or not available. This result is readily accessible to intuition, notably

in an economic context: when confidence in the quality, performance, or productivity is low,

and therefore a priori nobody would buy or invest, the availability of a costly signal makes it

possible to get out of such a situation in which due to informational asymmetries the market

would otherwise stay closed, and this increases overall social well-being. Remarkably—and

from a social point of view that can be considered a positive result—both evolutionary

dynamics and classical belief-based refinements of Nash equilibrium favor the emergence of

E1, respectively an equilibrium in the component E*-E1 or E*, over that of the no-signaling

equilibrium outcome P1. To which extent depends on the specific evolutionary dynamics,

respectively belief-based criterion that one considers (see Section 4 and 5).

• When the prior probability on the good type is above the critical value, p > 1/2, then payoff

comparisons depend on the cost of the signal for the low type.

Case 1: When c2, respectively c, is below 1 (Table 1), the equilibrium component P3, in which

none of player 1’s types uses the costly signal and player 2 in the absence of the costly

signal takes the desired action, Pareto dominates the two other equilibrium components

that exist in this case and in which the signal is used at least sometimes by some type,

E2 and P2: both types of player 1 strictly prefer P3 over P2, and the low type of player

1 even strictly prefers E2 over P2, while player 2 is indifferent in all three equilibrium

outcomes. The possibility to use a costly signal can be harmful here. It can result in

a social tragedy, namely when players, due to self-confirming expectations, get caught

in the suboptimal equilibrium outcome P2, in which everybody is forced to express the

costly signal—because everybody thinks that otherwise player 2 were not to accept—

which in the end has the effect that the supposed signal does not carry any information.

If the players in this game were to collectively step out of such expectations, and players

in the player 2 position did in fact accept when they did not observe the costly signal

(based on the fact that the prior is already sufficiently high), nobody would need to

signal: society as a whole would be better off. However, both P2 and P3 are stable,

under both evolutionary dynamics and belief-based, strategic stability criteria. That is

to say: once players have coordinated on the unhappy equilibrium outcome P2, neither
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evolution nor individuals’ decentralized strategically rational reasoning will take them

away from there.

Evolutionary dynamics, other than belief-based refinements of Nash equilibrium, at

least discard the partially revealing equilibrium E2, which has index −1 and hence

cannot be stable under any standard evolutionary dynamics (it is a saddle under both

the replicator and the best-response dynamics). Equilibria in the style of E2, where

the absence of the costly signal brings down the prior belief to some critical value,

have rarely been considered. This can be taken as evidence that such equilibria are

very unintuitive to the human mind. The fact that these equilibria are unstable un-

der evolutionary dynamics might serve as an explanation for the presence of such an

intuition.

Case 2 and 3: When c2, respectively c, is larger than or equal to 1 (Tables 2 and 3), while E2 can still be

discarded on evolutionary grounds, the remaining equilibrium components can no longer

be ranked according to the Pareto criterion. Player 2 now strictly prefers outcomes in

the component E*-E1’-P2 that do not put full weight on P2, respectively E*, over

P3. Certainly, player 2 rather gets some information about player 1, as opposed to

accepting throughout, which is the best she can do if nobody uses the costly signal. The

underlying potential conflict of interest between player 1 and 2 resurfaces as diverging

preferences over the possible equilibrium outcomes in the game. Here again, both

relevant components are stable under both evolutionary dynamics and belief-based

refinements of Nash equilibrium.

6.2 In defense of the “handicap principle”

It is by now widely agreed upon that the handicap principle cannot be maintained or understood

in the narrow sense that only perfectly revealing—“honest”—signaling equilibria can evolve due to

the fact that signals have to be costly. It is well understood that partially revealing—“hybrid”—

equilibria in the style of E1, in which the costly signal is used in equilibrium by different types

with different probabilities, and hence transmits partial information, are evolutionarily relavant

(Lachmann and Bergstrom 1998, Huttegger and Zollman 2010, Számadó 2011, Zollman et al.

2013).

Dawkins and Krebs (1978, Krebs and Dawkins 1985) have strenuously argued that signaling,

even in the animal world, is an exercise in mind-reading and manipulation and that therefore any

signaling mechanism, once in place, tends to be corrupted or invites to “cheating,” which can

lead to situations in which signals are only partially informative. Dawkins and Krebs’s account of

animal signals has sometimes been opposed to Zahavi’s (1975) theory of the handicap principle,
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which, on this view has been identified with the claim that signaling always has to be “honest” due

to the handicap principle. Remarkably, many of the later game-theoretic findings, notably, the

existence of partially revealing equilibria in the style of E1, mimic the phenomena of “cheating”

described by Dawkins and Krebs. Though it should be emphasized that from a game-theoretic

point of view there is nothing “cheating” or “dishonest” about partially revealing equilibria. These

equilibria simply have the property that the costly signal does not fully reveal the high type but

rather provides the receiver with an indication as to how to evaluate the probabilities of which type

his opponent is going to be. In equilibrium, these evaluations correctly reflect the distribution of

the behavioral program of using the signal or not using it in the two subpopulations corresponding

to the two types of player 1, and females’ responses to the character in question balance out the

advantages and costs of carrying it: the equilibrium conditions rooted in nature do not lie.

The game-theoretic analysis shows: whether signaling in equilibrium is perfectly or only par-

tially revealing is not a matter of principle but of degree: it depends on the specific cost parameters

associated to the signal for different sender types. More specifically, what matters for the signal

to be potentially a carrier of information is not the cost of the signal actually incurred by the

high type in equilibrium, but the cost of the signal for the low type. In a perfectly revealing

equilibrium, the cost of the signal for the low type has to be so high that it prevents him from

using the signal at all; in a partially revealing equilibrium (in the style of E1) it prevents him from

using the signal more often. Class I, in which signaling phenomena are sustained by differences

in the costs directly involved in producing the signal, exposes this aspect in absolute terms: a

perfectly revealing equilibrium exists only when the cost of producing the signal for the low type

c2 is at least as high as the benefit that he gets when player 2 accepts, which here is equal to

1. In the special case that c2 ≥ 1 and the cost of the signal for the high type c1 is 0, there is a

perfectly revealing equilibrium, in which nobody bears any direct cost for producing the signal.

On the other hand, the signal being of no cost at all for the high type (and of some cost for the

low type) is not sufficient to guarantee the existence of a fully separating equilibrium. If c1 = 0,

as long as c2 < 1, only a partially revealing equilibrium will exist. In class II, if the signal is of

no cost for the high type, it will also be of no cost for the low type, and then the only equilibria

that exist are such that player 2 acts on her prior belief. In class II then—which represents the

mechanism of the handicap principle in pure form, namely uniform costs of the signal against

differential background fitness—some positive cost of the signal is necessary to guarantee that the

signal transmits at least partial information.

The observation that in a number of species one sex (often the male) displays handicaps, char-

acters such as antlers, ornaments, or brilliant coloration that seem to have no function or to be

in outright opposition to the ecological problems of the species goes back to Darwin. Darwin

explained such phenomena to be the result of sexual selection, the hypothesis that females prefer-
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ably mate with individuals who excel in the display of the character in question. What is not

sufficiently explained by Darwin’s theory is why females would evolve such a preference. Zahavi’s

theory aims at tracing sexual selection back to natural selection. As Darwin already remarked,

and Zahavi in that straightforwardly builds on him: the effects of sexual selection have to be

compatible with the existence of the species. But therefore—and here is the twist that Zahavi

brings in—only those individuals who are best adapted to the selective pressure of the species can

afford to carry the risk that comes with the handicap:

I suggest that sexual selection is effective because it improves the ability of the se-

lecting sex to detect quality in the selected sex. [...] Before mate selection achieved

its evolutionary effect the organism was in equilibrium with the pressures of natural

selection. If the selective pressure of mate preference, which has no value to the sur-

vival of the individual, is added to the variety of selective pressures, the effect must be

negative. The larger the effect of the preference the more developed the character and

the larger the handicap imposed. Hence a character affected by sexual selection should

be correlated to the handicap it imposes on the individual. (Zahavi 1975, p. 207, our

emphasis)

That is the handicap principle (and not the claim that the handicap always fully reveals the type).

The correlation between the female preference for the handicap and the cost of the handicap that

Zahavi hypothesizes appears in the equilibrium conditions of the game-theoretic analysis, most

clearly in the partially revealing equilibrium E1: the female’s willingness to accept when she

observes the handicap (the costly signal s) is given by the net cost of the handicap for the low

fitness type (c2 respectively c). The higher that cost, the more likely the female is to accept: her

willingness to accept, that is, her preference for the handicap, is correlated to its cost (for the

low fitness type), but that does not imply that that cost has to be so high that the low fitness

type population can in no measure afford to express the handicap. The low fitness type can

express it in a measure precisely such as that observation of the handicap gives the female just

as much information about the male so that she is indifferent between accepting or not. Some

of the females then will accept and some will not, in a proportion, which in turn is such that

the population of the low fitness male is indifferent between expressing the handicap and not

expressing it. One sees from this discussion that focusing on fully revealing equilibria eventually

is to focus on monomorphic equilibria. Exploring the theory under parameter values for which

polymorphic signaling equilibria such as E1 exist, to our mind, does not invalidate the handicap

principle as originally formulated.

Zahavi’s handicap principle and Dawkins and Krebs’s theory of mind-reading and manipulation

are, we would like to defend from a game-theoretic point of view, not to be understood as two
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opposing paradigms but as two cases emerging from different parameter specifications that can be

accommodated under one coherent theory.

6.3 Phenomena explained: new applications in the study of language

and meaning systems

6.3.1 Indirect speech

Partially separating equilibria in the style of E1, in which the good type always uses the costly

signal and the bad type uses it with a certain probability have a property that makes them a

potentially very productive model when it comes to explaining features of human language, or

more generally social meaning systems: The costly signal s does not perfectly reveal the speaker’s

type but still gives the listener an indication about the speaker’s type (it will push the belief

that it is the good type up to a certain level) in precisely such a way as to leave the listener

indifferent between accepting and not accepting. In such a situation, the speaker, so to say, puts

it into the hands of the listener how to react: to take the responsibility to accept or to decline. In

equilibrium, of course, the listener takes this decision (deliberates between accepting and declining)

with a certain regularity, namely such that the bad type is indifferent between using the costly

signal s and not using it (s̄). The costly signal s, in such an equilibrium, one can say, functions as

a means to shape the belief of the other player in a particular way. It is as if the costly signal were

to come with a tag that says: “When you receive me, understand that your belief about the good

type should be 1/2—and that you are hence indifferent between accepting and not accepting.”

This can be interpreted as some kind of indirect speech.5 In such an equilibrium, the absence of

the costly signal (s̄), on the other hand, perfectly reveals the bad type, and hence frees player 2

of the responsibility to take any strategic decision in a non-trivial sense, because when she sees

that the costly signal has not been expressed, her best response is unique: not to accept. Such a

situation seems quite accurate for a number of scenarios in which politeness in language acts as

a costly signal in negotiating social relationships. For example, to hear the polite form, “Could

you please pass me the salt,” “Thank you so much for coming ...,” “You have a new haircut.

It looks nice.” etc., often does not tell the receiver much, in the sense that it really leaves her

indifferent as to whether a change in the current relationship type that links her to the speaker

5Steven Pinker and coauthors (2007, 2008) advance the hypothesis that the function of indirect speech is to avoid

common knowledge of the type of the speaker while giving the speaker the chance to achieve the desired relationship

change at least sometimes (here that would be to get accepted, hired, etc.). Equilibria of the form E1 mimic this

feature, at least in a certain way: using s avoids to give player 2 sure knowledge of the sender type—however not

because it leaves her in complete ambiguity about the sender’s type, but because it sets her belief about the sender

to a certain value somewhere strictly between 0 and 1 (here: 1/2) such that she will be indifferent between here

possible actions.
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of the message is warranted or not. Instead, not the hear the polite form, “The salt!” or simply

silence is a clear negative sign, and the answer should be accordingly (for example, downgrade the

current relationship type or not move to a higher relationship type).

6.3.2 Cycles around the partially separating equilibrium

How well can an equilibrium like E1, in which the probabilistic strategies that define it have to hold

in a very precise way, be thought of as mimicking reality? This is where the evolutionary analysis

might be particularly insightful. We have seen that under the replicator dynamics, the equilibrium

E1 is locally stable but not asymptotically stable because in its supporting 2-dimensional face it

is surrounded by periodic orbits. But we have also seen that this supporting face attracts an

open sets of states from the interior of the state space, which is to say that close to E1, the

replicator dynamics converges to a situation in which the players will cycle around something

quite similar to E1: The good type will always use s and player 2, in the absence of s, will not

accept (in these two positions, players behave exactly as in E1, which is precisely what defines

the supporting face of E1; see Figure 7). The bad type, instead, will express the costly signal

with some probability and player 2, when she observes the costly signal, will accept with some

probability. These probabilistic choices will not be exactly such as to make that altogether players

are in equilibrium. As a consequence, players who imitate behaviors that did well, will still have

incentives to adjust their behavior. But this imitating and adjusting will make them cycle around

the partially revealing equilibrium E1. And this might quite well mimic phenomena of real life.

It would be a very strong assumption to require that at observing the costly signal (for example,

the polite form), the listener makes a perfect Bayesian update and then takes the desired action

with precisely the probability that renders the bad type indifferent between expressing the costly

signal and not expressing it. But to assume that players have it approximately right and take

their actions with a probability that makes them cycle around an equilibrium like E1 seems rather

realistic. And similarly for applications where the interacting players are not reason-inspired

humans but animals species or other organisms: with the game-theoretic, dynamic analysis, we

see that hybrid signaling patterns in the style of E1 are not completely away from equilibrium,

but close to it, cycling around it, and that this may well be the outcome of evolution.

6.3.3 Coexistence of different signaling conventions

Another focus of our study is the so-far neglected case that the prior probability of the high

type is already above the critical value at which player 2 is indifferent between accepting and not

accepting. Is the coexistence of the two equilibrium components that exist in this case and that are

both stable under evolutionary dynamics, for instance P2 and P3 when c2 < 1, a shortcoming of

the model? Or the methods that we use? Such a view, to our mind, rests on the assumption that a
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theory of equilibrium refinement always has to single out a unique equilibrium. But the multiplicity

of different solutions—all equally plausible and justifiable on evolutionary and rational grounds—

might mimic reality. If a theory predicts under some conditions uniqueness of the solution, and

under some other conditions multiplicity of the solution, this should not be held against the theory

but rather be seen as part of its explanatory potential in that it can identify the conditions under

which uniqueness or respectively multiplicity of the solution prevails.

The study of language, or meaning systems in general, provides numerous illustrations for the

phenomenon of the co-existence of different equilibrium conventions. Interpret, for instance, the

game of class II as a model of politeness (Brown and Levinson 1987), with the costly signal s

standing for the more polite, marked form, and s̄ for an unmarked form. Social scientists and

linguists have pointed out that there are societies that routinely (and routinely can be understood

in the sense of “when the prior on the good type is sufficiently high”) use the polite form to

make some exchange happen—overstatement, while others routinely use the unmarked form—

understatement. Such conventions are reflected in the two stable equilibrium outcomes P2 and

P3. A similar phenomenon can be observed for signals of dress: if it is commonly known that

within a certain group the probability that someone is of a certain social standing or identification

is sufficiently high (p > 1/2), then both dressing up (P2) and dressing down (P3) can be the

ruling convention. Different codes of dress might be in place, for example, in different professions,

different companies, or different campuses of quite similar social composition.

At the same time, the co-existence of the two equilibrium outcomes P2 and P3, both stable

under evolutionary and rationality-based criteria, can become to basis of a form of discrimination,

namely when these two signaling conventions are in place for two different subgroups defined

by some observable trait that is not a matter of choice (for example, the skin tone or gender a

person grows up with) and that does not affect the prior probability of the unobservable trait in

question (productivity, for example), which, however—because it is observable—makes it possible

to condition the action of player 2 on that observable trait. Suppose, for example, that the prior of

the high productivity type in both the female and the male population is above 1/2. Because these

two populations can be distinguished based on the observable variable “gender,” in one population

the decision to hire might be bound to the expression of some costly signal (P2) while in the other

that might not be the case (P3). Spence (1973, chapter 6), in fact, already points to this sort of

phenomenon.

6.3.4 Social tragedies, evolutionary traps, and co-adaptation

The existence of the equilibrium outcome P2 certainly carries in it a social tragedy: in P2 ev-

erybody has to express the costly signal—because expectations are such that if the costly signal

were not expressed, player 2 would not to accept—but that signal carries no information, for the
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very reason that everybody expresses it. Such situations are not only relevant in a social context,

they can also represent an ecological or evolutionary trap. This kind of equilibrium outcome can

explain, for instance, why certain handicaps that transmit no information at all (because the entire

population expresses them) might persist. And this, in turn, might have some explanatory poten-

tial in a longer-run evolutionary perspective for phenomena of co-adaptation, where a handicap

that is or has become without function in information transmission still survives in the population

and then is recruited for some other function in a different game later on. Human language, one

can speculate, might have evolved in this way.

This touches on a crucial question when it comes to applications: to analyze some trait or

behavior as a costly signal is not identical with the claim that this functionality as a costly signal is

why that trait or behavior has originally evolved. Language, again, is a good example: Languages

vary naturally. Different variants (languages, dialects or accents) evolve due to neutral drift,

migration, language contact, etc. But once such variants do exist, they can become functional

beyond the transmission of conventionally encoded meaning—“in some other social game,” so

to say. For instance, how quickly an individual learns a new variant or competently navigates

between different such variants (the ability of code switching) might become a signal for some

social quality such as one’s social alertness, willingness to adapt, etc. Or take food sharing, gift-

giving, or ritualized forms of hunting: Such practices might have started for a multitude of reasons,

and they might serve a multitude of functions (reciprocal altruism, for instance). But once they

are a social practice, they might also become functional in transmitting information about the

abilities of the individuals involved.
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